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Foreword

Policing resources across North America have become increasingly under pressure,
and police governance authorities and governments are struggling to meet the
increasing demands of both frontline policing and the complicated financial and
social impacts of organized crime on society. Along with these pressures, the
world of intelligence gathering has remained relatively stable and consistent in
its use of human source information to inform law enforcement authorities on
the location and proliferation of organized crime activities in our societies. The
research demonstrated in this text shows an alternative evidence-based approach
to the standard intelligence gathering process by enhancing law enforcement’s
preventative capacity in identifying organized crime groups that previously went
undetected under standard police intelligence gathering techniques. The utilization
of co-offending networks and geographical analysis provides an unbiased scientific
methodology to the intelligence process that in addition to human source techniques
increases the productivity and accountability of policing resources in the detection
and strength of organized crime groups. Early identification and detection of
these groups through predictive policing ensures that both law enforcement and
communities can proactively engage and mobilize community efforts to disrupt
and remove the threat of organized crime on society. The research conducted by
Mohammad A. Tayebi and Uwe Glässer at Simon Fraser University provides an
excellent stepping stone for intelligence and law enforcement agencies alike to
more thoroughly analyze police/intelligence databases in ensuring the most useful
allocation of policing resources

Director Dr. Hugh Stevenson Ed.D.
Criminal Intelligence Services Ontario
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Preface

Predictive policing is promising for crime reduction and prevention to increase
public safety, reduce crime costs to society, and protect the personal integrity
and property of citizens. Strategic law enforcement operations aiming at proactive
intervention in criminal activities can be a viable alternative to simply reacting to
criminal acts. New methodologies in data science along with emerging applications
of big data analytics to crime data promote a paradigm shift from tracking patterns
of crime to predicting those patterns. Crime data analysis as presented in this
book concentrates on relationships between offenders to better understand their
criminal collaboration patterns through social network analysis. Law enforcement
agencies have long realized the importance of co-offending networks for designing
prevention and intervention strategies. According to Reiss (1988), understanding
co-offending is central to understanding the etiology of crime and the effects of
intervention strategies.

The objective of this book is to bring into focus predictive policing as a new
paradigm in crime data mining and introduce social network analysis as a practical
tool for turning crime data into actionable knowledge. The book systematically
studies co-offending network analysis for various forms of criminal collaborations,
starting with a formal model of crime data and co-offending networks to bridge the
conceptual gap between abstract crime data and co-offending network mining. The
formal representation of criminological concepts presented here allows computer
scientists to think about algorithmic and computational solutions to problems long
discussed in the criminology literature. This includes criminal network disruption,
suspect investigation, organized crime group detection, co-offense prediction and
crime location prediction. For each of the studied problems, we start with well-
founded concepts and theories in criminology, then propose a computational model,
and finally provide a thorough experimental evaluation, along with a discussion of
the results. This way, the reader will be able to study the complete process of solving
real-world multidisciplinary problems.

The targeted audience of this book includes researchers in computer sci-
ence and criminology who are interested in predictive policing as an emerging

vii



viii Preface

multidisciplinary field as well as practitioners in collaborations between law
enforcement and academia who search for novel and practical ideas to take
predictive policing to the next level.

We would like to gratefully acknowledge the help and support of individuals
and institutions who contributed to the work presented in this book, including
RCMP “E” Division, BC Ministry for Public Safety and Solicitor General, Institute
for Canadian Urban Research Studies (ICURS), Public Safety Canada, Patricia
Brantingham, Paul Brantingham, Martin Ester, Gary Bass, Richard (Dick) Bent,
Richard Frank, Mohsen Jamali, Vahid Dabbaghian, Laurens Bakker, and Austin
Lawrence.

British Columbia, Canada Mohammad A. Tayebi
Uwe Glässer
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Chapter 1
Introduction

Crime is a purposive deviant behavior that is an integrated result of different social,
economical, and environmental factors [1]. Crime imposes a substantial cost on
society at individual, community, and national levels [8]. Criminality worldwide
makes trillions of dollars yearly, turning crime into one of the world’s “top 20
economies” [5]. Based on the most recent report [6], the total cost of crime in
Canada during 2012 is estimated as $81.5 billion, approximately 5.7 % of national
income. Given such whopping costs, crime reduction and prevention strategies have
become a top priority for law enforcement agencies.

Policymakers inevitably face enormous challenges deploying notoriously scarce
resources even more efficiently to apprehend criminals, disrupt criminal networks,
and effectively deter crime by investing in crime reduction and prevention strategies.
While data collection from different sources, data preparation and information
sharing pose difficult tasks, the big challenge for law enforcement agencies is
analyzing and extracting knowledge from their large collection of crime data.
Applying data-driven approaches on such data can provide a scientific foundation
for developing effective crime reduction and prevention strategies through analysis
of offenders’ spatial decision making and their social standing. The main idea
behind crime prediction techniques is that crime is not random but happens in
patterned ways [2, 4, 9–13]. In the crime data mining process the goal is to
understand criminal behaviors and extract criminal patterns in order to predict crime
and take steps to prevent it.

Although crime analysis has a very long history, it has rapidly grown in the
last decades to become common practice in law enforcement agencies. Crime
analysis aims to assist police in criminal apprehension and crime reduction through
systematic study of crime. Crime analysis has two main functions: strategic and
tactical. Strategic analysis is about examining long-term crime trends. Tactical
analysis concentrates on short-term and immediate problems to investigate the
relationship between suspects and crime incidents.

© Springer International Publishing Switzerland 2016
M.A. Tayebi, U. Glässer, Social Network Analysis in Predictive Policing,
Lecture Notes in Social Networks, DOI 10.1007/978-3-319-41492-8_1
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2 1 Introduction

The rapid evolution of data science, employing techniques and theories drawn
from broad areas such as machine learning and data mining, through availability
of massive computational power increasingly influences our daily lives. Data are
collected, modeled, and analyzed to uncover the patterns of human behavior and
help with predicting social trends. This is changing the way we think about business,
politics, education, health, and data science innovations will undoubtedly continue
in the years to come. One particular area that has seen limited growth in accepting
and using these powerful tools is public safety. This is somewhat surprising given
the important role that predictive analytics can play in public safety.

New methodologies emerging in data science can advance crime analysis to the
next level and move from tracking patterns of crime to predicting those patterns.
This has led to a new paradigm of crime analysis, called predictive policing.
Predictive policing uses data science to identify potential targets for criminal activity
with the goal of crime prevention. Successful predictive policing results in more
proactive policing and less reactive policing.

One of the most important goals of crime analysis is generating information that
can enhance decision making for deploying police resources to prevent criminal
activity. With predictive policing this process becomes more efficient and effective
using the discovered patterns about crime locations, crime incidents, crime victims,
criminals, criminal groups, and criminal networks. Nevertheless, predictive policing
methods are neither a substitute for integrated solutions to policing nor equivalent to
a crystal ball that can foretell the future. Predictive policing can facilitate proactive
policing and improve intervention strategies by means of making efficient use of
limited resources. These methods give law enforcement agencies a set of tools to do
more with less.

One of the important tasks in predictive policing is analyzing the relationships
between offenders to learn the criminal collaboration patterns. Law enforcement
agencies have long realized the importance of analyzing co-offending networks—
networks of offenders who have committed crimes together—for designing preven-
tion and intervention strategies. Despite the importance of co-offending network
analysis for public safety, computational methods for analyzing large-scale net-
works are rather premature.

Contrary to other social networks, concealment of activities and the identity
of actors is a common characteristic of co-offending networks. Still, the network
topology is a primary source of information for predictive tasks. Predictive policing
methods can significantly take advantage of discovering collaboration patterns
in co-offending networks. In this work we study co-offending network analysis
as effective tool assisting predictive policing. The next section summarizes the
contributions of this book.

This work is multidisciplinary, situated at the intersection of computer science
and criminology, an area called computational criminology which uses computer
science methods to formally define criminological problems, facilitate the process
of understanding criminological phenomena, and present computational solutions
for such problems. While computational modeling of crime can have far-reaching
consequences on crime reduction and prevention, criminology and computer science
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still remain widely divided. This can be attributed to several factors such as the
complicated nature of crime, challenges behind access to crime data, and lack of
formal modeling of criminological issues. Formal modeling of a problem improves
our understanding, and enhances formal analysis and reasoning. The initial problem
formulation influences the rest of the research process. In multidisciplinary research
problem formulation is a challenging task since it requires in-depth knowledge and
good understanding from multiple domains.

The contribution of this work is two-fold. First, based on criminological theories,
we formulate problems in the scope of predictive policing which can be addressed
using social network analysis. It is important to point out the purpose of the work
here is not alter or change the original problems, but present formal representations
so that analysis can be done through algorithms. In the criminology literature there
is a wide discussion on the problems studied here, but it lacks formal problem
definitions required to make the problems tractable by computational models and
methods. Our formal representation of criminological concepts allows computer
scientists to think about algorithmic and computational solutions. Second, for each
of the studied problems we propose a computational method, perform thorough
experimental evaluation, and discuss the results.

We present here a unified crime data model as precise semantic foundation for co-
offending network analysis [3]. This conceptual model provides a clear separation
between crime data and computational methods, allowing the development of the
computational methods to be done in a transparent way. We present a thorough
study of structural properties of co-offending networks, and discuss implications of
each of these properties for law enforcement agencies [3, 20]. Criminal network
disruption strategies and verifying their impact on criminal groups is an important
issue for police to control criminal groups. We study how centrality measures can be
used to detect the key players in co-offending networks for the purpose of proactive
interventions to control criminal organizations [17].

Organized crime is seen as a principal threat to public safety. Understanding
organized crime as a multifaceted, dynamically changing form of criminality is
very challenging. There have been some worthwhile studies [4], but there is no
clear conceptualization of this phenomenon, and lack of clarity, transparency, and
uncertainty creates obstacles to combat these organizations. While we are not aware
of any formal modeling of organized crime groups in the literature, we present here
a mathematical model of organized crime groups. From a social network analysis
perspective we propose a community detection approach to identify organized crime
groups, and a model to study their evolution trace [7, 14–16, 18].

We present a novel approach to crime suspect recommendation based on partial
knowledge of offenders involved in a crime incident and a known co-offending
network [19]. To solve this problem, we propose a random walk based method for
recommending the top-N potential suspects.

The next problem we study is co-offence prediction. In the suspect investigation
problem the goal is detecting potential suspects for a single crime incident, but
in the co-offence prediction problem we aim at predicting the most probable
criminal collaborations using the co-offending network structure and offenders’ side
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information such as their demographic characteristics and spatial patterns. In the
latter work, we propose a framework for co-offence prediction using supervised
learning [22].

In our study of co-offence prediction, we realize the importance of the spatial
movement patterns of offenders. After formalizing the concept of offenders’
probabilistic activity space, as will be explained in Chap. 7, we propose an approach
to generate the personalized activity space of an offender on a road network as urban
layout. We use all available information about offenders in the crime dataset such
as their crime records and co-offending network to enhance the method. Finally,
we use the activity space of offenders to predict the location of their future crimes
[21, 23, 24].

To the best of our knowledge, this work is the first comprehensive attempt to use
co-offending network analysis in predictive policing suggesting a paradigm shift in
the way co-offending network analysis is used for crime reduction and prevention.
There are several major reasons that make this book a useful resource for readers
with different backgrounds and goals: (1) We have explored thoroughly the crimi-
nology literature to identify and understand essential criminological problems that
can take advantage of co-offending network analysis; therefore, this work covers the
fundamental problems in this domain; (2) The proposed formal representation of the
studied problems provides solid ground for algorithmic and computational research
on those problems; (3) Our proposed algorithmic solutions for the studied problems
have two important characteristics: first, they are established on the relevant
criminological theories, and second, they are easy to interpret by domain experts
including criminologists and law enforcement personnel; (4) The proposed methods
are experimentally evaluated using a large real-world crime dataset producing
high-quality results. We are not aware of any related work assessing performance
using a similar dataset; and (5) This multidisciplinary work is completed in close
collaboration with criminologists and law enforcement experts.

After this introductory chapter we provide an overview of co-offending network
analysis applications in predictive policing in Chap. 2. We study general concepts of
social network analysis and co-offending network analysis in this chapter. Chapter 3
discusses the structural properties of co-offending networks. This study helps to
understand the basic properties of co-offending networks. The crime dataset used
for experimental evaluation in this book is introduced in this chapter. In Chap. 4, we
present our approach for detecting organized crime groups. Our proposed method
for organized crime group detection is established on a comprehensive study of the
concept of organized crime in the criminology literature, presented in the beginning
of this chapter. Chapter 5 describes CRIMEWALKER, the proposed method for
suspect investigation. We study how the structure of co-offending networks can
be used in criminal profiling. In Chap. 6, we present a framework for co-offence
prediction using supervised learning. More specifically, we study how different
features of offenders can be used to predict a criminal collaboration. Chapter 7
describes CTIMETRACER, a method for personalized crime location prediction.
CTIMETRACER generates the activity space of every offender for the purpose of
predicting the location of their crimes. We study offender mobility to understand the
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activity space concept. Finally, we conclude this work and propose future work in
Chap. 8. The chapters are self-contained with their own introduction, basic concepts,
conclusions, and pointers to other relevant chapters or sections. They may be read
in arbitrary order.
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Chapter 2
Social Network Analysis in Predictive Policing

Police departments have long used crime data analysis to assess the past, but
the recent advances in the field of data science have introduced a new paradigm,
called predictive policing which aims to predict the future. Predictive policing as a
multidisciplinary approach brings together data mining and criminological theories
which leads to crime reduction and prevention. Predictive policing is based on the
idea that while some crime is random, the majority of it is not. In predictive policing
crime patterns are learnt from historical data to predict future crimes.

Social connections and processes have a central role in criminology. But in
the recent decades criminologists turned their attention to criminal networks to
study the onset, maintenance, and desistance of criminal behavior [14]. More
than two decades ago, Reiss [17] argued that “understanding co-offending is
central to understanding the etiology of crime and the effects of intervention
strategies.” Meanwhile, influenced by increasing academic and societal awareness
of the importance of social networks, law enforcement and intelligence agencies
have come to realize the value of detailed knowledge of co-offending networks
[4, 10, 14, 15, 17, 18].

In this chapter, we first discuss conventional crime analysis and predictive
policing as a new perspective in crime-fighting strategies. Then, we introduce social
network analysis and review general related work in co-offending network analysis.
Finally, we briefly introduce different tasks of social network analysis in predictive
policing studied in the next chapters of this book.

2.1 Conventional Crime Analysis

Analysis of crime has a long history, but crime analysis as a discipline is established
when the first modern police started to work in London in the early nineteenth
century [1]. After the constitution of the London police force in the 1820s, this force
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initiated a detective department with the responsibility of detecting crime patterns
to solving crimes. The earliest source known for the term crime analysis is the book
police administration published in 1963 [29]:

The crime-analysis section studies daily reports of serious crimes in order to determine
the location, time, special characteristics, similarities to other criminal attacks, and various
significant facts that may help to identify either a criminal or the existence of a pattern of
criminal activity. Such information is helpful in planning the operations of a division or
district.

In the 1970s, the government of the USA tried to increase the ability of police
departments in using crime analysis by inviting academics and practitioners. Later
a group of academics started to emphasize the importance of characteristics of
criminal events such as the location of crime which initiated the geographic analysis
of crime. In the 1990s, with the increase of computer power, analyzing large crime
dataset becomes computationally feasible, and police agencies tend to use crime
analysis tools to generate analytical reports [19].

The main purpose of the crime analysis is crime reduction. In the policing
approaches few mainstreams can be observed which get advantage of crime
analysis [19]:

• Standard model of policing. The standard model of policing uses law enforce-
ment in a reactive manner. Crime analysis helps in efficient allocation of police
resources geographically and temporally.

• Community policing. Community policing strategies benefit from partnership
and collaboration of the community to understand and solve the problems. The
main role of crime analysis in these strategies is providing information to citizens.

• Disorder policing. Disorder policing or broken window policing is applying
strict law enforcement procedures to minor offences to prevent happening of
more serious crimes. Crime analysis is helpful in evaluating the disorder policing
approaches.

• Problem-oriented policing. In problem-oriented policing the goal is diagnosing
problems within the community and developing appropriate responses which
solve the cause of the problems. Crime analysis is used in all phases of a problem-
oriented policing strategy including scan, analysis, response, and assess.

• Hotspots policing. Hotspots policing is a location-based policing in which the
police resources are allocated to different areas proportional to crime rate of each
area. Crime analysis is used in identifying the hotspots.

Crime analysis contributed to the operational, tactical, and strategic police
decision making for decades, but in the recent decade the emergence of data
science field has arisen a new paradigm in this discipline called predictive policing
introduced in the next section.
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2.2 Predictive Policing

“Predictive policing refers to any policing strategy or tactic that develops and uses
information and advanced analysis to inform forward-thinking crime prevention”
[26], which involves multiple disciplines to form the rules and develop the models.
Given that research strongly supports that crime is not random but rather occurs
in patterns, the goal of predictive policing methods is to extract crime patterns
from historical data at both macro and micro scales as a basis for prediction and
prevention of future crimes [3, 8, 22–25]. This approach uses data-driven tools
that benefit from data mining and machine learning techniques for predicting crime
locations and temporal characteristics of criminal behavior.

Predictive analysis for policing can be divided into four classes:

• Predicting offenders. The goal is predicting future offenders using the history
of individuals such as features of their living environment and behavioral
patterns.

• Predicting victims. This is about identifying individuals who more likely than
others may become victims and predicting risky situations for potential victims.

• Predicting criminal collaborations. Predicting likely future collaboration
between offenders and the type of associated crime.

• Predicting crime locations. This task aims at predicting the location of future
crimes at individual and aggregate level.

In this research our focus is on different problems related to the last two tasks:
predicting criminal collaborations and crime locations. For solving this problems we
use social network analysis methods. In the next sections we discuss social network
analysis and its applications for predictive policing.

2.3 Social Network Analysis

Social networks represent relationships among social entities. Normally, such
relationships can be represented as a network. Examples include interactions
between members of a group (like family, friends, or neighbors) or economic
relationships between businesses. Social networks are important in many respects.
Social influence may motivate someone to buy a product, to commit a crime, and
any other decision can be interpreted and modeled under a social network structure.
Spread of diseases such as AIDS infection and the diffusion of information and
word of mouth also strongly depend on the topology of social networks.

Social network analysis (SNA) focuses on structural aspects of networks to detect
and interpret the patterns of social entities [28]. SNA essentially takes a network
with nodes and edges and finds distinguished properties of the network through
formal analysis. Data mining is the process of finding patterns and knowledge
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hidden in large databases [9]. Data mining methods are increasingly being applied
to social networks, and there is substantial overlap and synergy with SNA.

New techniques for the analysis and mining of social networks are developed
for a broad range of domains, including health [27] and criminology [31]. These
methods can be categorized depending on the level of granularity at which the
network is analyzed [2]: (1) methods that determine properties of the social network
as a whole; (2) methods that discover important subnetworks; (3) methods that
analyze individual network nodes; and (4) methods that characterize network
evolution. In the following, we list the primary tasks of SNA:

• Centrality analysis [28] aims at determining more important actors of a social
network so as to understand their prestige, importance, or influence in a network.

• Community detection [6] methods identify groups of actors that are more densely
connected among each other than with the rest of the network.

• Information diffusion [12] studies the flow of information through networks
and proposes abstract models of that diffusion such as the Independent Cascade
model.

• Link prediction [13] aims at predicting for a given social network how its
structure evolves over time, that is, what new links will likely form.

• Generative models [5] are probabilistic models which simulate the topology,
temporal dynamics, and patterns of large real-world networks.

SNA also greatly benefits from visual analysis techniques. Visualizing structural
information in social networks enables SNA experts to intuitively make conclusions
about social networks that might remain hidden even after getting SNA results.
Different methods of visualizing the information in a social network providing
examples of the ways in which spatial position, color, size, and shape can be used
to represent information are mentioned in [7].

In the next section we introduce co-offending networks as a special type of social
networks.

2.4 Co-offending Networks

Criminal organizational systems differ in terms of their scope, form, and content.
They can be a simple co-offending looking for opportunistic crimes, or a complex
organized crime group involved in serious crimes. They can be formed based on
one-time partisanship for committing a crime, or their existence can have continuity
over time and across different crime types [4]. In a criminal organization system
interaction among actors can be initiated from family, friendship, or ethnic ties.
Here, our focus is on co-offending networks.

A co-offending network is a network of offenders who have committed crimes
together [17]. With increasing attention to SNA, law enforcement and intelligence
agencies have come to realize the importance of detailed knowledge about co-
offending networks. Groups and organizations that engage in conspiracies, terroris-
tic activities and crimes like drug trafficking typically do this in a concealed fashion,
trying to hide their illegal activities. In analyzing such activities, investigations do
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not only focus on individual suspects but also examine criminal groups and illegal
organization and their behavior.

Thus, it is important to identify co-offending networks in data resources readily
available to investigators, such as police arrest data and court data, and study
them using social network analysis methods. In turn, social network analysis can
provide useful information about individuals as well. For example, investigators
could determine who are key players, and subject them to closer inspection. In
general, knowledge about co-offending network structures provides a basis for law
enforcement agencies to make strategic or tactical decisions.

Several empirical studies that use social network analysis methods to analyze co-
offending networks have focused on the stability of associations in such networks.
Reiss [17] concludes that the majority of co-offending groups are unstable, and
their relationships are short-lived. This is corroborated by McGloin et al. [15],
who showed that there is some stability in co-offending relationships over time for
frequent offenders, but in general, delinquents do not tend to reuse co-offenders.
Reiss et al. [18] also found that co-offenders have many different partners, and are
unlikely to commit crimes with the same individuals over time. However, Reiss
[17] also states that high frequency offenders are “active recruiters to delinquent
groups and can be important targets for law enforcement.” It should be noted that
the findings of these works were obtained on very small datasets: 205 individuals in
[18], and 5600 individuals in [15], and may therefore not be representative.

These studies only analyzed co-offending networks. Smith [21] widened the
scope of co-offending network analysis, enhancing the network by including extra
information, particularly for the purpose of criminal intelligence analysis. For exam-
ple, nodes of the network could be offenders, but also police officers, reports, or
anything that can be represented as an entity. Links are associated with labels which
denote the type of the relationship between the two entities, such as “mentions”
or “reported by.” A similar approach was taken by Kaza et al. [11], who explored
the use of criminal activity networks to analyze information from law enforcement
and other sources for transportation and border security. The authors defined the
criminal activity network as a network of interconnected criminals, vehicles, and
locations based on law enforcement records, and concluded that including especially
vehicular data in criminal activity network is important, because vehicles provide
new investigative points.

A slightly different take on widening the scope of co-offending network analysis
was taken by Xu et al. [30], who employed the idea of a “concept space” in order
to establish the strength of links between offenders. Not only the frequency of co-
offending, but also event and narrative data were used to construct an undirected
but weighted co-offending network. The goal was to identify central members and
communities within the network, as well as interactions between communities. By
applying cluster analysis in order to detect subgroups within the network they were
able to detect overall network structures which could then be used by criminal
investigators to further their investigations.

COPLINK [10] was one of the first large-scale research projects in crime data
mining, and an excellent work in criminal network analysis. It is remarkable in
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its practicality, being integrated with and used in the workflow of the Tucson
Police Department. Xu et al. [31] built on this when they created CrimeNet
Explorer, a framework for criminal network knowledge discovery incorporating
hierarchical clustering, SNA methods, and multidimensional scaling. The authors
further expanded the research in [30] and designed a full-fledged system capable of
incorporating external data, such as phone records and report narratives, in order to
establish stronger ties between individual offenders. Their results were compared to
the domain knowledge offered by the Tucson Police Department, whose jurisdiction
the data came from.

2.5 Co-offending Network Analysis in Practice

Co-offending network analysis contributes to predictive policing by detecting
hidden links and predicting potential links among offenders. In this section, we
introduce important applications of co-offending network analysis in predictive
policing which are covered in this research.

• Co-offending network disruption. Actors of a social network can be catego-
rized based on their relations in the network. Actors in the same category may
take similar roles within an organization, community, or whole network. These
roles are usually depend on the network structure and the actors’ position in
the network. For instance, actors who are located in the central positions of a
social network may be detected as key players in that network. Actors who are
connected to many other actors may be viewed as socially active players, and
actors who are frequently observed by other actors may be identified as popular
players.

In the co-offending networks disruption problem the goal is finding a set
of players whose removal creates a network with the least possible cohesion.
In other words, their removal maximally destabilizes the network. This task is
critical in the co-offending network analysis where removing the key players
may sabotage the network and decrease the aggregate crime rate. We study this
problem in Chap. 3.

• Organized crime group detection. Organized crime is a major international
concern. Organized crime groups produce disproportionate harm to societies,
and an increasing volume of violence is related to their activities. Since the
aim of organized crime groups is gaining material benefit they try to access to
resources that can be profitably exploited. In terms of economic-related crimes
(e.g., credit and debit card fraud) organized crime costs Canadians five billion
dollar a year [20].

Understanding the structure of organized crime groups and the factors that
impact on it is crucial to combat organized crime. There are several possible
perspectives how to define the structure of organized crime groups, but recent
criminological studies are increasingly focusing on using social network analysis
for this purpose. The idea of using social network analysis is that links between
offenders and subgroups of an organized crime group are critical determinant of
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the performance and sustainability of organized crime groups [16]. In Chap. 4,
we study the organized crime group detection problem.

• Suspect investigation. Security services can more precisely focus their efforts
based on probable relationships in criminal networks that have previously
not observed. Traditional suspect investigation methods use partial knowledge
discovered from crime scene to identify potential suspects. Co-offending network
analysis as a complement of criminal profiling methods can contribute to the
suspect investigation task in cases with multiple offenders committing a crime,
but a subset of offenders are charged. This issue is addressed in Chap. 5.

• Co-offence prediction. Link prediction is an important task in social network
analysis that can help to study and understand the network structure. Link
prediction methods can be used to extract missing information, identify hidden
links, evaluate network evolution mechanisms, and so on. Co-offence prediction
can be defined as link prediction problem for co-offending networks. Chapter 6
is about the co-offence prediction problem.

• Personalized crime location prediction. An important aspect of crime is the
geographic location that crime happens. Every neighborhood provides some
condition in which criminal behavior takes place, but crime distribution in
city neighborhoods is not even. Understanding the spatial patterns of crime
is essential for law enforcement agencies to design efficient crime reduction
and prevention policies. Although mining spatial patterns of crime data in the
aggregate level took special attention in the criminology literature, there is
not that much work about crime spatial patterns for individual offenders. This
problem is addressed in Chap. 7.
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Chapter 3
Structure of Co-offending Networks

Co-offending networks are generally extracted from police recorded crime data.
For doing so, we need to have a clear view of crime data. In this chapter, we first
introduce a unified formal model of crime data as a semantic framework for defining
in an unambiguous way the meaning of co-offending networks at an abstract level.
Then, we introduce a real-world crime dataset, referred to as BC crime dataset
which is used in this book, and the BC co-offending network which is extracted
from this dataset. The BC crime dataset represents 5 years of police arrest-data for
the regions of the Province of British Columbia which are policed by the RCMP,
comprising several million data records.

The structure of social networks affects the process of human interaction and
communication such as information diffusion and opinion formation. Studying
structural properties of a social network is essential for understanding the social
network. The same statement is true about co-offending networks. In the second
part of this chapter, we study structural properties of the BC co-offending network
and discuss important implications of such properties for law enforcement agencies.
In the last part of this chapter, we focus on detecting key players of co-offending
networks, and how this aspect contributes to co-offending network disruption.

Section 3.1 introduces the crime data. Section 3.2 presents structural properties
of co-offending networks. We study how to identify key players of a co-offending
network in Sect. 3.3. Section 3.4 concludes this chapter.

3.1 Crime Data

Police recorded crime data is highly sensitive making it difficult for the researchers
to access in a convenient way. Researchers obtain access to crime data if only they
provide high standards of safe data storage and processing solutions. Some of the
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preconditions for a researcher to access crime data include signing confidentiality
agreements, maintaining comprehensive security measures for crime data storage
and retrieval, and finally providing police background checks.

This section proposes a unified formal model of crime data serving as the
semantic framework for defining in a concise and unambiguous way properties
of interest in the analysis of co-offending networks and their constituent entities.
Specifically, the formal model aims at bridging the conceptual gap between data
level, mining level and interpretation level, and facilitates separating the description
of data from the details of data mining and analysis. By gradually transforming and
reducing the unified model to more specific views, the co-offending network model
is obtained as one such view.

3.1.1 Crime Data Model

We model a crime dataset based on a collection of regular police records that
document crime events in a geographic area of interest reported over some period
of time [5]. Each record refers to a single crime event; two or more records may
refer to the same event. A crime dataset abstractly represents a finite set of crime
events as associated with a given collection of regular police records such that each
single event, together with all reported data and information related to this event, is
identified with a different element in the crime data set and every element in this set
uniquely refers to one of the crime events.

Formally, we represent the logical organization of the crime data and information
associated with a crime dataset C as a finite graph structure in the form of an
attributed tripartite hypergraph H (N ,E ) with a set of nodes N and a set of hyper-
edges E . The set N is composed of three disjoint subsets, A = {a1,a2, . . . ,aq},
I = {i1, i2, . . . , ir}, and R = {r1,r2, . . . ,rs}, respectively, representing actors like
offenders, suspects, victims, witnesses, and bystanders; incidents referring to
reported crime events; and resources used in a crime, such as weapons, tools,
mobile phones, vehicles, and bank accounts. Generic actors serve as placeholders
if a person’s identity remains unclear, say an unrecognized offender who evaded
apprehension. Whenever no specific resource can be identified or has been reported,
the distinguished element “unknown” is used as a placeholder.

A hyperedge e of E is a non-empty subset of nodes {n1,n2, . . .np} ⊆ N
such that the following three conditions hold: |e ∩ I| = 1, |e ∩ A| ≥ 1 and |e ∩
R| ≥ 1. For any e,e′ ∈ E with e ∩ I = e′ ∩ I, it follows that e = e′. Intuitively,
a hyperedge e of H associates a set of actors {ai1 ,ai2 , . . . ,aij} ⊆ A and a
set of resources {ri1 ,ri2 , . . . ,ril} ⊆ R with a crime incident ik ∈ I, where e =
{ik,ai1 ,ai2 , . . . ,aij ,ri1 ,ri2 , . . . ,ril} as illustrated in Fig. 3.1.

Finally, with each node n ∈ N we associate some non-empty list of attributes
characterizing the entity represented by n. Attributes of actors, for instance include
the name, address and contact details, and the criminal profile information of known
offenders while attributes of incidents include the crime type, the time of the
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Fig. 3.1 Hypergraph H (without attributes) for a simple crime data model C

incident, longitude and latitude coordinates of the crime location, and the role of
each person identified in connection with the incident, among various other types of
data and information.

For analyzing and reasoning about specific aspects of crime data that can be
described in terms of entities and their relations, the hypergraph H is transformed
in several steps into several bipartite graph structures as follows. From the original
graph H , we derive a hypergraph H ′(N ,E ′), where N is identical to the node
set of H and

E ′ = {{a, i,r}| ∃e ∈ E : {a, i,r} ⊆ e, a ∈ A, i ∈ I, r ∈ R}.

Note that H ′ has the same attributes as H . Now, H ′ can further be decomposed
in a straightforward way into three bipartite graphs that, respectively, model the
relations between actors and incidents (graph AI), actors and resources (graph AR),
and incidents and resources (graph IR). The goal of the transformation process is
focusing on more important subsets of data to extract more meaningful elements
from the crime dataset. This multi-step process not only facilitates the extraction of
more important and meaningful elements of crime data, but also it gives us a better
understanding of different aspects of crime data. From each of these bipartite graphs
we can extract a set of networks and use them for different mining purposes. For
instance, we can extract co-offending network or two-mode network of offenders
and victims from the graphs AI to learn the patterns among offenders, and the
patterns between offenders and victims.

3.1.2 Co-offending Network Model

A co-offending network consists of groups of two or more offenders who have
committed crimes together. Co-offending networks constitute a widespread form
of social networks that is of considerable interest in crime investigations and in
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the study of crime. For instance, co-offending behavior is a relevant factor for
law enforcement agencies, criminal intelligence and criminal justice agencies to
better understand organized crime and also pivotal in evidence-based policy making
aiming at crime reduction and prevention.

Starting from the graph AI, we define a co-offending network [5] as a graph
G(V,E), where V refers to the subset of known offenders in A and E indicates known
co-offences. Two nodes am,an ∈ V are connected in G whenever there is an incident
ik ∈ I such that {am, ik} and {an, ik} are edges in AI. A value strength assigned to
each edge e in E indicates the number of known co-offences committed by the same
two offenders, strength(e) ∈ N with strength(e)≥ 1. Γi denotes the set of neighbors
of offender ai in the co-offending network.

Assuming k offenders and m crime events (k,m > 1), we define a k×m matrix M
such that muv = 1, if offender u is involved in event v, and “0” otherwise. This way,
we can express the co-offending network as a k× k matrix N = MMT and therefore
have

nu,v =
k

∑
x=1

nuxnxv (3.1)

This matrix links offenders involved in the same crime events. For any two given
offenders, the strength of a link is the number of co-offenses. The diagonal of this
matrix shows for each offender the number of related crime events.

3.1.3 BC Crime Dataset

As a result of a research memorandum of understanding between ICURS1 and
“E” Division of Royal Canadian Mounted Police (RCMP) and the Ministry of
Public Safety and the Solicitor General, 5 years of real-world crime data was made
available for research purposes. This data was retrieved from the RCMP’s Police
Information Retrieval System (PIRS), a large database system keeping information
for the regions of the Province of British Columbia which are policed by the
RCMP. PIRS contains information about all reported crime events (≈4.4 million)
and all persons (offenders, victims, witnesses, etc.) associated with a crime incident
(≈9 million referring to about four million unique individuals). Table 3.1 shows the
statistical properties of the BC co-offending network.

In total, there are 39 different subject (person) groups. For any given crime
incident, every related subject has up to three different status fields, stating the
subject’s “role” in this incident. Out of four million subjects in the dataset, 250,492,
255,302, 190,406, and 228,792, respectively, appear at least once as charged,

1The Institute for Canadian Urban Research Studies (ICURS) is a university research center at
Simon Fraser University.
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Table 3.1 Statistical properties of the BC co-offending network

Metric All crimes Serious Property Drugs Moral

Number of offenders 157,274 31,132 44,321 54,286 35,266

Average degree 4 1.85 1.95 2.15 4.8

Average distance 12.2 1.69 8.45 22.17 3.41

Diameter 36 13 24 56 19

Effective diameter 16.87 4.1 14.36 36.14 5.68

Clustering coefficient 0.39 0.28 0.33 0.39 0.49

Largest component percentage 25 % 10 % 32 % 23 % 21 %

chargeable, charge recommended, or suspect. In our experiments, we restrict on
the subjects in these four categories. Being in one of these categories means that the
police were serious about the subjects involvement in a crime. In this book, we call
this group of subjects “offenders.”

In total, there are over 50 groups of crime types. Four most important
groups are:

• Serious Crimes: crimes against a person, such as homicide and attempted
homicide, assault, abduction;

• Property Crimes: crimes against property, such as burglary (break and enter into
a premises or real property, and theft);

• Moral Crimes: such as prostitution, arson, child pornography, gaming, breach;
• Drug Crimes: such as trafficking, possession, import/export.

3.2 Co-offending Network Structural Properties

In this section, we present the important concepts of structural analysis of social
networks as well as the results of our analysis on the BC co-offending networks [5].
We apply the analysis tasks on the co-offending networks extracted from different
crime types and also on several snapshots of these networks.2 Gu(t) denotes the
co-offending network of a specific crime type u (a, s, p, d, and m represent the all,
serious, property, drugs, and moral crimes types) from year 2001 to year t.

2In implementing the analysis tasks, we used SNAP library which is publicly available at http://
snap.stanford.edu/.

http://snap.stanford.edu/
http://snap.stanford.edu/
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3.2.1 Degree Distribution

The degree of a node is the number of edges the node has. The degree distribution,
P(k), gives the probability that a randomly selected node has k links. Studies have
shown that the most real-world networks from diverse fields ranging from sociology
to biology to communication follow a power-law distribution [1]:

P(k) = k−λ (3.2)

where λ is called exponent of the distribution. Power-law distribution implies that
nodes with few links are numerous, while very few nodes have very large number
of links. Networks with this property are called scale free networks.

There are other network models such as Erdos–Renyi [11] and Watts and Strogatz
[1] models that are known as exponential networks, and their degree distribution
conforms to a Poisson distribution. In this type of networks there is a peak at the
average degree of network, therefore, most of the nodes have the same degree
around average degree of network and very few nodes have very small or very large
node degrees.

Our studied co-offending network is scale free. Figure 3.2 demonstrates the
cumulative degree distribution for different types of co-offending networks. Degree
distribution of all of these networks are consistent with the power-law distribution.
Meaning that the majority of offenders have small degree, and a few offenders have
significantly higher degree. To test how well the degree distributions are modeled
by a power-law, we computed the best power-law fit using the maximum likelihood
method [9]. The power-law exponent for all crimes, serious, property, drugs and
moral co-offending networks, respectively, are 2.29, 1.57, 1.42, 1.53, and 2.28.

3.2.2 Co-offending Strength Distribution

Each link in a co-offending network is associated with a co-offending strength.
The co-offending strength of two offenders i and j is equal to the number of
crimes these offenders committed together. We define network Ḡ(V,E,α) where
E includes the links between the pairs of offenders i, j ∈ V whose co-offending
strengths exceed a specified threshold α . Then we will have a family of networks
{Ḡ(α1), Ḡ(α2), . . . , Ḡ(αm)} corresponding to different values of α .

Figure 3.3 plots the distribution of number of nodes and links for the threshold
networks. Again, a power-law distribution of co-offending strength suggests that the
vast majority of dyads offended once or twice, but there are only about hundred
dyads that offended with each other more than ten times over 5 years. When
two offenders collaborate on multiple incidents, the likelihood of having a strong
relationship between them is higher. Therefore, such offenders and their behaviors
should be inspected more carefully by the crime investigators.
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3.2.3 Connecting Paths

Crime investigators frequently need to determine if there is a possible connection
among a specific group of offenders in a co-offending network. For answering such
questions we need to identify if two offenders are connected in a co-offending
network, and what is the shortest connecting path. Generally Dijkstra’s shortest path
algorithm [10] for weighted networks and Breadth First Search (BFS) algorithm for
unweighted networks are used to identify the shortest paths.

Average distance of the network G(V,E) is defined as the average path distance
of connected pairs of nodes. Average path distance shows the speed of spreading a
message in a network. Let lij denote the length of shortest path connecting i and j if
there is such a path and as infinity if there is not any path connecting nodes i and j.
The average distance of network G is defined as

AvgD(G) =

∑
{i,j}:lij 	=∞

lij

|{{i, j} : lij 	= ∞}| (3.3)

and the diameter of network G is defined as

Diam(G) = Max(lij : lij 	= ∞) (3.4)
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Diameter is the length of the longest shortest path between any pair of nodes,
which describes the compactness and connectivity of the network. A network with a
small diameter is well connected but a network with a large diameter is sparsely
connected. For removing the effect of outliers another measure called effective
diameter is used. Effective diameter is the minimum number of hops in which at
least 90 % of all connected pairs of nodes can reach each other [17]. Table 3.1
shows the average distance, diameter and effective diameter for the five studied
co-offending networks. The average distance and diameters for some of them
are remarkably short. For instance, for the network Ga(2006) average distance,
diameter, and effective diameter are 12.2, 36, and 16.87, respectively.

3.2.4 Clustering Coefficient

In many social networks friends of an actor is likely to be also her friend. In other
words, actors tempt to create complete triangles of relationships. This property is
called network clustering or transitivity. The clustering coefficient of a node in a
co-offending network tells us how much an offender’s collaborators are willing to
collaborate with each other. Local clustering coefficient calculates the probability of
neighbors of a node to be neighbors to each other is given by

Cv =
av

|Γv|(|Γv|−1)
(3.5)

where |Γv| is the number of neighbors of v. |Γv|(|Γv| − 1) is the maximum number
of links that can exist between neighbors of v, and av is the number of links that
actually exist among neighbors of v. The clustering coefficient of the network is
computed by averaging Cv over all nodes [1]:

C =
1
|V| ∑

v∈V

Cv (3.6)

The clustering coefficient of Gs(2006), Gp(2006), Gd(2006), Gm(2006), and
Ga(2006) are, respectively, 0.28, 0.33, 0.39, 0.49, and 0.39. The clustering coef-
ficient of a network shows to what extent friends of a person are also friends with
each other. Co-offending network of moral crimes has larger clustering coefficient,
which shows offenders in this network have closer collaboration comparing to other
types of co-offending networks.

3.2.5 Connected Components Analysis

Entities of a network are interested in forming groups and interact more closely to
each other inside the group. The specific characteristic of a group is that there is
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a higher degree of connectivity inside the group than entities outside the group.
Nowadays, studying the behavior of criminal groups becomes more important.
In the last decade there have been more and more experimental studies into
criminal activities that need specific forms of collaboration and organization [7].
For detecting these types of collaboration we need to mathematically formalize
concepts such as offender group, gang, organized crime, and corporate crime and
then design efficient algorithms for this purpose. By inspecting relations between
offenders to identify criminal groups, law enforcement organizations can track the
origin and core of what may become an organized crime group or a gang. In this
way a criminal group can be identified prior to its formation and police can follow
such offenders’ behavior.

As a first step, we studied the distribution of size of connected components in
the co-offending networks. A connected component is a subset of network where
there exists a path between any two nodes in it [22]. If two offenders were involved
in a crime, there is a path between them. If a third offender commits a crime with
one of these offenders, a path can be built connecting the first offender with the
third offender and so on. If a path between two offenders can be established, the
two offenders belong to the same component. Studying characteristics of connected
components is an initial step in analysis of epidemic spreading through a social
network. Extracting patterns of connected components of co-offending networks
provides valuable information for law enforcement agencies in fighting epidemics
of crime.

Let |c| represent the size of component c. Then we define three types of
components: large components |c| ≥ 1000, medium components 100 ≤ |c|< 1000,
and small sized components 2 ≤ |c| ≤ 100. In the network Ga(2006), 25 %, 1 %,
and 74 % of the whole offenders are connected to each other, respectively, through
large, medium, and small components.

In the second step, we study the community structure in the co-offending
network. To do this, we apply the Girvan–Newman algorithm [12] for detecting
communities on the network Ga(2006). The key idea behind this algorithm is that
the edges connecting highly clustered communities have a higher edge betweenness,
and communities can be detected by progressively removing such edges from
the network. After every removal, the betweenness of edges is recalculated, and
the process is repeated until the network is divided into a specified number of
subnetworks, the communities.

Figure 3.4 shows the size distribution of detected communities and connected
components. The largest extracted community size has about 4000 nodes, which is
relatively small compared to the largest component with more than 39,000 nodes.
However, a criminal group of few thousand members cannot be interpreted from a
criminological perspective. There is a need for novel community extraction methods
that particularly address the special requirements of co-offending networks. In
Chap. 4, we study the problem of detecting organized crime groups.
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3.2.6 Network Evolution Analysis

Like many other social networks, a co-offending network is not a static network
and keeps changing over time. Offenders may leave or join the network and their
position in the network may change by obtaining or losing power. Links between
offenders may form or disappear. Offender groups may appear, split, merge, or
disappear. Network structure may change from decentralized to centralized, flat to
hierarchical or vice versa. Detecting the evolution patterns of co-offending networks
provides important information for law enforcement agencies to understand the
behavior of these networks.

We study how a co-offending network evolves over time based on multiple
snapshots of the network. For this purpose, we generated five snapshots of the
co-offending network for the years 2001–2006. Each snapshot contains
the extracted co-offending network from events that happened from 2001 up to
that time. For example, Ga(2004) is the co-offending network of all crimes from
2001 to 2004. Below, we examine the evolution of co-offending network based on
these five snapshots for various network structural properties.

Figure 3.5 depicts the evolution of size and number of connected components
over time. The most interesting observation is that, after 1 year, in the network
Ga(2002) there is no large component but it grows in a nearly linear trend. On
the other hand, in all networks not many offenders are connected to the medium
sized components. The reason is that the medium sized components are merged
with the large components through some of their nodes, and we do not have them
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as independent components. In other words, the medium sized components blend
in the large components very soon and make them richer; therefore, we do not
observe their existence in the network for a long time period. There exists a similar
phenomenon in other real-world social networks, a large component tends to merge
with the remaining singletons and smaller components [14]. The number of nodes
that belong to the small components is almost constant in all 5 years. The reason
is that always some of the small components are connected to the medium or large
components and simultaneously some new small components appear in the network.

In Fig. 3.6 we plot the evolution of the average distance, diameter, and effective
diameter of the co-offending network between 2001 and 2006. This finding may be
surprising because of the increasing size of the co-offending network, as network
models generally suggest that average distance and diameter should increase with
network size [2]. In our case, all these three measures are increasing in the first
3 years and then they start decreasing in the last 2 years. There are studies which
report similar results [15].

Figure 3.7 shows how the clustering coefficient changes over the studied time
period. There are three observations. First, clustering coefficient is stationary during
the 5 years. As expected, clustering coefficient is higher than the expected clustering
of a random network with the same number of nodes and edges. Finally, our results
are opposite to the empirical studies of some of the social networks [2], where
clustering coefficient was found to decrease over time.
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3.3 Key Players in Co-offending Networks

Identifying the key player is a common problem studied in social networks. Key
players are potentially more important and also have a higher influence on the other
actors [13]. Recognition and removal of these nodes from the network is an aspect
of fundamental importance in the study of crime, especially organized crime, for
splitting a network and for making it dysfunctional [4].

Key players of a network can be viewed from two different perspectives: their
positive or negative role in the network [4]. In the positive key player identification,
we need to measure the degrees of connectivity and centrality of an actor in the
network, but in the negative key player identification we need to measure the
network cohesiveness reduction after nodes removal. Nevertheless, the methods
proposed for negative or positive key player identification are very similar with
different functionalities. In co-offending network analysis the goal is identifying
negative key players. This is formally defined as follows [4]:

Given a co-offending network, find a set of k nodes such that removing this set of nodes
would result in a residual network with the least possible cohesion.

3.3.1 Centrality Measures

Intuitively, centrality measures identify the actors with the greatest structural impor-
tance in a network. The existing centrality measures can be divided into three groups
based on how they are calculated: node degree, shortest path, and actor ranking
methods. Node degree based methods, such as indegree and outdegree measures,
are local measures that only use information of the first-level relationships. Methods
which work based on information derived from shortest path between actors, such as
closeness and betweenness, are considered as global measures. The important point
is that in these methods centrality of a node is calculated regardless of the position
of the other nodes in the network. In contrast, actor ranking measures, including
eigenvector and PageRank, not only they are global, but also they consider centrality
of the other nodes in the network.

Degree Centrality Degree centrality is based on the number of outgoing links of an
actors. A node with more links obtains greater degree centrality value. This measure
focuses on the most visible actors in the network. An actor with a high degree is in
direct relationship with many other actors. Such actors should be recognized by
other actors as a main channel of information spreading, indeed, a crucial cog in the
network, occupying a central position [22]. In contrast, actors with low degree are
peripheral in the network and these actors are not active in the connection process.
Degree centrality of the actor v is [22]
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CD(v) =
|Γv|

N −1
(3.7)

where |Γv| is the number of direct neighbors of v, and N is the number of actors in
the network.

Closeness Centrality The main idea behind the closeness centrality is that actors
that can quickly contact other actors in the network take the central position. The
closeness centrality of an actor in a social network is the inverse of the average
shortest path distance from the actor to any other actor in the network. This measure
shows how much each actor is efficient in spreading information to other actors.
The larger the closeness centrality of an actor, the shorter the average distance from
the actor to any other actor, and therefore, the better position the actor has in the
network. Closeness centrality of the node v is computed as [19]

Cc(v) =
N −1

∑
u∈V

d(u,v)
(3.8)

where d(u,v) is the distance of node v from node u in the network.

Betweenness Centrality The betweenness centrality is defined as the number
of shortest paths between pairs of nodes that pass through the given node. This
centrality measure is based on the idea that an actor is key player if it sits in between
many other pairs of actors, and it would be traversed by many of the shortest paths
connecting pairs of actors. The betweenness centrality of the node v is defined as [8]

Cc(v) = ∑
u,w∈V
u 	=w	=v

σuw(v)
σuw

(3.9)

where σuw(v) represents the total number of shortest paths between each pair of
nodes like u and w that pass through node v, and σuw denotes the total number of
shortest paths from u to w.

Eigenvector Centrality The eigenvector method aims to recognize the central
actors in terms of the global structure of the network. Eigenvector centrality
is defined as the principal eigenvector of the adjacency matrix representing the
network. The eigenvector of a network is computed using equation [3]:

λv = Av (3.10)

where A is adjacency matrix of the network, λ is a constant (eigenvalue), and v
is the eigenvector. The idea behind this approach is that actors are central if they
have central neighbors. Therefore, centrality of an actor does depend not only on
the number of its neighbors, but also on their centrality in the network.
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PageRank Centrality PageRank method [6] is a variant of the eigenvector
centrality measure which basically is used for ranking the web pages. PageRank
models the behavior of a surfer of the web pages, and ranks the web pages based on
his behavior. The surfer starts at a random page, and move from a page to another
page using the outgoing links. For jumping from a page to another one, the outgoing
links are selected uniformly at random. Also the surfer with a probability can jump
to any other page. The iteration process is continued until convergence is obtained.
This result indicates the chance of a page being visited by the surfer. This method
can also be applied on social networks to rank actors. PageRank of the node v is
computed as

Cp(v) =
1−d

N
+d( ∑

∀u:u∈Γv

Cp(u)

Γv
) (3.11)

where N is the number of nodes in the network, Γu is the set of all nodes connecting
to u, and d is the probability of continuing the process of moving on the network
and not jumping to a random page which is a fixed parameter between zero and one.

3.3.2 Key Players Removal Effects

We believe network centrality analysis can help law enforcement agencies develop
strategies for crime reduction and prevention. The current strategy is trivial, from a
network perspective: remove those offenders that are most active (nodes with high
degree) or commit the most severe crimes. Reiss’s argument that some offenders
actively recruit new offenders, [18] combined with Liu et al.’s finding that key
players (assumed to be the recruiters) are not necessarily the most active criminals
in a network [16] warrants a close look at key player identification in co-offending
networks. The hiddenness of links and the time-varying structure of these networks
necessitate thorough analysis and experimentation to extract the facts to base law
enforcement policy on.

In the next section, several experiments were conducted to evaluate the appropri-
ateness of various centrality measures (degree, closeness, betweenness, eigenvector,
and PageRank) for identifying important actors in co-offending networks [21]. The
crime rate and network structure are intricately linked. The overall crime rate,
however, is not equal to the total number of links in the network, since every event
involving k offenders translates to a complete graph of size k in our co-offending
network. Thus, characteristics of network structure may give some intuition about
our original question, a connection which we will revisit in discussing our first
experiment.

We investigate the effects of removing central nodes selected using the static
network (all two, three, or 4 years worth of data combined) and those selected
using a dynamic network (one network for each year). The thought is to account
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for possible (lack of) persistence in the co-offending network, possibly putting
more emphasis on more recent crimes in determining if a person is likely to
commit new crimes. Priority given to more recent crimes reflect a real-world
bias/predilection/skew of assigning more importance to more recent crimes in
determining the criminality of an offender. A small difference between the selections
from the static and dynamic networks would lend credibility to the hypothesis that
important offenders do not change their game. A larger difference would mean the
co-offending network is to some extent transient: offenders cease activity, and other,
new offenders start.

All figures below are of offender removal experiments: the top 1%, 5%, 10%,
and 20% of nodes according to each centrality measure is removed from the
network, and a line plot of a statistic on the resulting network is shown. A thick
dotted line indicates the reference level of the statistic, being either the expected
value of the statistic given the number of offender that are removed, or the value
of the statistic over the whole network if its change due to node removal cannot be
forecast.

3.3.3 Experiments and Results

It is common practice that the network in which centrality is measured is the
same as the network in which the effects of removal of the most central nodes are
measured (see Fig. 3.8, provided here for reference). Most of the results are as one
should expect: cutting by degree centrality has the largest effect on average degree,
cutting by betweenness has the largest effect on the largest component size, exactly
what these centrality measures were designed for. One highlight of these figures
is the reasonable efficacy of degree centrality-based node removal, the selection
method used by law enforcement agencies, for breaking up the network (Fig. 3.8c),
an important feature under our assumption that at least some crime is socially
stimulated or facilitated. Other methods (eigenvector and betweenness centrality)
can do better, though, partly validating our current research question.

In a crime prevention scenario, and any network that changes over time, this is
of course not appropriate: removal happens based on information collected prior to
the time of removal, and affects the network after the time of removal. Therefore,
we split up the data into five networks, one for each year’s worth of data, and tested
the effects of intervention (central node removal) after the first year, second year,
third year, and fourth year, identifying central nodes in the network of the previous
years and removing those from the network of the following years. For reference,
we also include the whole network analysis, in which central nodes were identified
in the same (whole) network as they were removed from.

In this experiment [21], the top offenders according to each centrality measure
computed over the network preceding the intervention were removed from the
network at the intervention. Since these offenders are assumed to be dominant
actors in the network, causing others to offend, other offenders who only commit
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Fig. 3.8 Network statistics for the whole network (2001–2006) after removal of the top x% of
offenders, according to different centrality measures

crimes with (one of) these top offenders are also removed. The effect on the
resulting networks after the intervention is illustrated in Fig. 3.9. Only the number
of offenders is reported, but the results for other network statistics are quite similar,
showing only marginal change.
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a b

c d

Fig. 3.9 Post-intervention number of offenders for interventions at different points in time

The decrease in the number of offenders in the resulting network is smaller than
would be expected (represented by the dashed line). This points to an important
feature of the network: transience. Table 3.2 shows the overlap, computed using the
Jaccard index

J (S1,S2) =
S1 ∩S2

S1 ∪S2
(3.12)

between offender sets of subsequent years, and of pre- and post-intervention
networks, and it re-affirms the transient nature of the network.

This transience should be interpreted with caution. One could infer that the
majority of offenders come into contact with the police only very infrequently,
and this is indeed the case. This does not, however, imply that such offenders are
incidental criminals; they may have been arrested, and thereby removed from any
opportunity to recur in the data. We currently do not have access to data that would
allow us to distinguish between the two, but incidental criminality supposedly being
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Table 3.2 Overlap between offender sets in
subsequent years, and overlap between pre-
intervention and post-intervention offender sets

J(2001–2002,2002–2003) 0.0972

J(2002–2003,2003–2004) 0.1627

J(2003–2004,2004–2005) 0.1853

J(2004–2005,2005–2006) 0.1976

J(2001–2002,2002–2006) 0.0471 (0.0455)

J(2001–2003,2003–2006) 0.1118 (0.1255)

J(2001–2004,2004–2006) 0.1654 (0.2073)

J(2001–2005,2005–2006) 0.2040 (0.2807)

In brackets: the average realized Jaccard index of
the sets of most important offenders, as explained
in the text

Table 3.3 Overlap between offender sets in different years, measured as the Jaccard index

2001–2002 2002–2003 2003–2004 2004–2005 2005–2006

2001–2002 1.0000 0.0972 0.0798 0.0675 0.0569

2002–2003 0.0972 1.0000 0.1627 0.1570 0.1248

2003–2004 0.0798 0.1627 1.0000 0.1853 0.1803

2004–2005 0.0675 0.1570 0.1853 1.0000 0.1976

2005–2006 0.0569 0.1248 0.1803 0.1976 1.0000

the result of coincidence (as a form of randomness), incidental criminals should be
less likely identified as central nodes.

This supposition is supported by the results presented in Table 3.2, where the
average realized Jaccard index is listed in brackets after J(pre-intervention,post-
intervention). The realized Jaccard index is the Jaccard index of the selected set of
most important offenders of the pre-intervention network and the set of all offenders
in the post-intervention network, divided by its theoretical maximum (when all most
important offenders recur in the post-intervention network). Table 3.2 shows that, as
the amount of historical information included in the selection of important offenders
(the pre-intervention network) increases, the selected most important nodes from the
pre-intervention network are more likely to occur in the post-intervention network
[p < 0.01 for J(2001–2005,2005–2006)]. Thus, we have shown that centrality in the
co-offending network in the past is at least somewhat informative about criminality
in the future, getting back to our original hypothesis.

With the 5 years worth of data batched into individual years, it would seem rather
naïve to assign equal importance to events that happened in the first year and events
that happened in the last year. This is supported by the overlap between the offender
sets of the different years, measured by the Jaccard index in Table 3.3. The overlap
between two “time slices” decreases as the amount of time between them increases.
This points yet again to the previously mentioned network transience. It also hints at
the fact that if we wish to find offenders who will be important after a certain time,
we may do well to discount the distant past over the near past.
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It may therefore be possible to improve on the previous results by taking into
account time, and we compared several time-weighting schemes w:

• none (aggregate network over all years)
• uniform:

wu(Cx,vi) =
5

∑
t=1

cx(vi ∈ Gt)

• linear:

w�(Cx,vi) =
5

∑
t=1

t · cx(vi ∈ Gt)

• exponential:

we(Cx,vi) =
5

∑
t=1

cx(vi ∈ Gt)
t

where cx(vi ∈ Gt) computes centrality x for actor vi in the network of year t.
If time-weighting changes the set of offenders selected for removal, the structural

characteristics of the post-intervention network should also change. The effect on
the resulting networks after the intervention is illustrated in Fig. 3.10 as change
with respect to the (unweighted) baseline. A positive outcome indicates that
the weighting approach was able to further reduce the number of offenders, as
compared to the baseline static network. A negative outcome means that the
weighting approach actually performed more poorly than without time-weighting.
Consistently with the foregoing, only the number of offenders is reported. It is clear
that centrality measures measuring more transient features (shortest paths) benefit
from taking time into account. Quite counterintuitively, uniform weighting appears
to champion the others, suggesting that if historically more important offenders
remain important, it does not matter when in history they were important.

3.4 Conclusions

Research in co-offending network mining often lacks access to large real-world
crime data sets. One reason for this limitation is the highly sensitive nature of such
data and the related privacy issues demanding strict security protocols as well as data
storage and processing facilities that meet exceptionally high security standards.
An interesting open question is to what extent advanced anonymization techniques
can help solving this problem by making secure data more widely available without
compromising privacy.

The proposed formal model of crime data and co-offending networks provides
a well-defined semantic framework for describing in an unambiguous way the
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a b

c

Fig. 3.10 Performance of weighting schemes compared with no weighting scheme (positive
values indicate more offenders removed, and hence better performance than unweighted; negative
values indicate fewer offenders removed and poorer performance)

meaning of co-offending networks and their constituent entities at an abstract
level. Specifically, the formal model aims at bridging the conceptual gap between
data level, mining level, and interpretation level, and also facilitates separating the
description of the data from the details of data mining and analysis.

In our study we have extracted co-offending networks for a number of most
important types of crime, including serious, property, drugs, and moral crimes. The
analysis of the co-offending network structure revealed several interesting insights.
Surprisingly, the average distance and the diameter of the co-offending network
have shrunken in the last few years, indicating a densification of the social network.
These results are in line with known studies that show similar phenomena in other
types of social networks [15].

Centrality analysis is a well-established field of research in social network
analysis, and although its applicability in crime prevention is clear, and its
potential impact large, it has not gotten the attention it deserves in recent studies
of co-offending networks. This is likely due to the limited accessibility of large-
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scale data sets, leading researchers to focus on either quite theoretical work [16] or
limit their analysis to a relatively small sample [20].

In this chapter we present results of centrality analysis on the BC co-offending
network. The ultimate goal is to select offenders such that an intervention entailing
their removal would reduce crime rate. Although the efficacy of the investigated
centrality measures was limited because of the high transience in the network
(offenders ceasing activity and new offenders appearing), we could show that
offenders identified as central (by any measure) were more likely to commit further
crimes. This effect grew stronger as the amount of information (time observed) used
to select central offenders was increased.

Armed with this intuition that time does indeed matter, we compared the
performance of centrality measures when computed not over the pre-intervention
network as a whole, but over each pre-intervention year individually. We compared
several weighting schemes over the centralities per year with unweighted whole-
network centrality and found that centrality measures that capitalize on transient
characteristics of the network (shortest paths) benefit, whereas centrality measures
that rely on more time-stable features of the network did not benefit, or even lost
some efficacy. Counterintuitively, equal weighting of all years seemed to be better
than discounting the distant past over the near past.

References

1. A.L. Barabasi, R. Albert, Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

2. A.L. Barabasi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social
network of scientific collaborations. Physica A 311, 590–614 (2002)

3. P. Bonacich, Factoring and weighting approaches to status scores and clique identification.
J. Math. Sociol. 2(1), 113–120 (1972)

4. S.P. Borgatti, Identifying sets of key players in a social network. Comput. Math. Organ. Theory
12(1), 21–34 (2006)

5. P.L. Brantingham, M. Ester, R. Frank, U. Glässer, M.A. Tayebi, Co-offending network mining,
in Counterterrorism and Open Source Intelligence, ed. by U.K. Wiil (Springer, Vienna, 2011),
pp. 73–102

6. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine. Comput. Netw.
ISDN Syst. 30(1), 107–117 (1998)

7. G. Bruinsma, W. Bernasco, Criminal groups and transnational illegal markets. Crime Law Soc.
Chang. 41(1), 79–94 (2004)

8. P.J. Carrington, J. Scott, S. Wasserman, Models and Methods in Social Network Analysis
(Cambridge University Press, New York, 2005)

9. A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data. SIAM
Rev. 51(4), 661–703 (2009)

10. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271
(1959)

11. P. Erdös, A. Rényi, On random graphs, I. Publ. Math. Debr. 6, 290–297 (1959)
12. M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc.

Natl. Acad. Sci. 99(12), 7821–7826 (2002)



38 3 Structure of Co-offending Networks

13. D.M.A. Hussain, D. Ortiz-Arroyo, Locating key actors in social networks using bayes posterior
probability framework. Intell. Secur. Inform. 5376, 27–38 (2008)

14. R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, in
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’06) (2006), pp. 611–617

15. J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: densification and shrinking diameters.
ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

16. X. Liu, J. Bollen, M.L. Nelson, H. Van de Sompel, Co-authorship networks in the digital library
research community. Inf. Process. Manag. 41(6), 1462–1480 (2005)

17. C.R. Palmer, P.B. Gibbons, C. Faloutsos, Anf: a fast and scalable tool for data mining
in massive graphs, in Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge discovery and Data Mining (KDD’02) (2002), pp. 81–90

18. A.J. Reiss Jr., Co-offending and criminal careers. Crime Justice 10, 117–170 (1988)
19. G. Sabidussi, The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)
20. M.K. Sparrow, The application of network analysis to criminal intelligence: an assessment of

the prospects. Soc. Netw. 13(3), 251–274 (1991)
21. M.A. Tayebi, L. Bakker, U. Glässer, V. Dabbaghian, Locating central actors in co-offending

networks, in Proceedings of the 2011 International Conference on Advances in Social
Networks Analysis and Mining (ASONAM’11) (2011), pp. 171–179

22. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge
University Press, New York, 1994)



Chapter 4
Organized Crime Group Detection

In this chapter, we propose a new computational approach to organized crime group
detection based on a social network analysis perspective. A challenging aspect is
the need for a precise definition of what exactly constitutes a criminal organization.
Confronted with a bewildering diversity of characteristics in definitions of organized
crime and criminal organizations, the conceptual model of organized crime appears
not clearly rendered in the literature—at least not for the purpose of computational
analysis [3, 6, 8, 10, 18, 20].

Striving for a general and open definition, a natural source is the criminal code,
although this depends on the specific country. Starting from the definition of
criminal organization in the Criminal Code of Canada [10], we focus on methodical
and analytical aspects in utilizing social network analysis methods for organized
crime group detection. The main goal is to promote co-offending network analysis
as an effective means for extracting information about criminal organizations from
police-reported crime data. We contend that it would be virtually impossible to
obtain such information by using traditional crime analysis methods.

The approach described here comprises three major building blocks: (1) a group
detection method, an extension of the clique percolation method [14], to match a
working definition of offender group; (2) a crime assessment method which covers
and formalizes common characteristics of organized crime found in the criminology
literature; (3) a group evolution model for analyzing offender group behaviour over
the observable life cycle of a group.

Section 4.1 discusses related work. Section 4.2 introduces the concepts and the
terminology, and the problem definition. Section 4.3 presents the organized crime
group detection framework. Next, Sect. 4.4 discusses our experimental results on
the BC crime dataset. Section 4.5 concludes this chapter.

© Springer International Publishing Switzerland 2016
M.A. Tayebi, U. Glässer, Social Network Analysis in Predictive Policing,
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4.1 Background

Studying prominent historical research on how organized crime developed in New
York City, Block [3] concludes that “organized crime was not only more fragmented
and chaotic than believed, but also it involved webs of influence that linked criminals
with those in positions of power in the political and economic world.” He argues that
these patterns of affiliation and influence were far more important than any formal
structure, since they allowed criminals to maximize opportunities, and should be
considered a social system.

The social system of organized crime [3]:

. . . refers to the notion that organized crime is a phenomenon recognizable by reciprocal
services performed by professional criminals, politicians, and clients. Organized crime
is thus understood to lie in the relationships binding members of the underworld to
upperworld institutions and individuals. Organized crime is not a modern, urban, or lower-
class phenomenon; it is a historical one whose changes mirror changes in civil society, the
political economy. That is why, naturally, organized crime is increasingly taken to represent
a series of relationships among professional criminals, upperworld clients and politicians
. . .

Confronted with a bewildering diversity of characteristics referred to in existing
definitions of organized crime and criminal organizations, the conceptual model
itself appears not clearly rendered in the literature. Striving for a definition that is
general and open, a potential source is the criminal code, although this depends
on a specific country. For instance, a baseline definition of criminal organization is
provided by the Criminal Code of Canada [10, p. 49]:

In Canada a criminal organization is a group, however organized that: (a) is composed of
three or more persons in or outside Canada; and (b) has as one of its main purposes or main
activities the facilitation or commission of one or more serious offences, that, if committed,
would likely result in the direct or indirect receipt of a material benefit, including a financial
benefit, by the group or by any one of the persons who constitute the group. The definition
further specifies that it excludes a group of three or more persons that has formed randomly
for the immediate commission of a single offence. Section 467.1(1) of the Criminal Code
of Canada.

Looking for a quantitative definition, in an attempt to measure organized crime,
van der Heijden proposes a number of common characteristics [18]:

1. Collaboration of more than two people;
2. Commission of serious criminal offences (suspected);
3. Determined by the pursuit of profit and/or power;
4. Each having their own appointed tasks;
5. For a prolonged or indefinite period of time;
6. Using some form of discipline and control;
7. Operating across borders;
8. Using violence or other means suitable for intimidation;
9. Using commercial or businesslike structures;

10. Engaged in money laundering;
11. Exerting influence on politics, the media, public administration, judicial author-

ities, or economy.
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According to [18], for any criminal group to be categorized as organized crime it
needs to have at least six of the above characteristics, where items 1, 2, and 3 are
obligatory, thus adding three more characteristics.

A major study in the Netherlands [8] mentions great variations in collaborative
forms of organized crime and concludes that “the frameworks need not necessarily
exhibit the hierarchical structure or meticulous division of labor often attributed
to mafia syndicates. Intersections of social networks with a rudimentary division
of labor have also been included as groups in the sub-report on the role of Dutch
criminal groups, where they are referred to as cliques. As is demonstrated . . . there
can be sizable differences in the cooperation patterns within these cliques and
between the cliques and larger networks of people they work with on an incidental
basis.”

An impressive collection of definitions of organized crime specific for various
countries, comprising more than individual 150 entries in total, has been gathered
by von Lampe [20]. In addition, this collection also includes comments on how to
define organized crime, and definitions by prominent individuals and government
agencies, for instance, such as the Federal Bureau of Investigation (FBI). Not
included though are definitions of the term “organized crime group.” Given the
abstract nature and informal language of these definitions, it is not clear at all how
and to what extent one may utilize this resource for defining organized crime in
precise computational and/or mathematical terms.

In most cases, existing definitions in the literature on organized crime concen-
trate on three essential perspectives for characterizing the nature of this form of
crime [19]: In the first view, organized crime is primarily about crime. Organized
crime is seen as a specific type of criminal activity that has certain specific
characteristics such as continuity in contrast to irregular criminal behaviour. In the
second view, organized crime is more related to the concentration of power, either in
economic or in political structures of the society. And in the third view, the emphasis
is on organized. That is, the important aspect of organized crime is on how offenders
are connected to each other more than what they do.

Based on the third view, we formalize the central aspects of criminal networks
in a coherent and consistent formal framework to provide a precise semantic
foundation that is consistent with criminological research, social network analysis,
and law enforcement operations. Our work aims at bridging the conceptual gap
between data level, mining level, and interpretation level, and is intended for
developing advanced computational methods for analyzing co-offending networks
to detect and extract organized crime structures and how they evolve over time in
order to assist law enforcement and intelligence agencies in their investigations.
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4.1.1 Community Detection in Social Networks

This section addresses the concept of community in social networks and explores
community detection methods. Crime groups in co-offending networks can be
viewed as communities in social networks and thus may be identified using existing
detection methods.

Community detection in social networks has attracted considerable interest and
many definitions of the concept of community have been proposed. In social science
studies, social networks are considered as basis of social behaviours and activities.
Studies of different social networks show that community structure influences
information transfer, communication, and cooperation. Sense of community is
generally defined as a feeling that members of a group matter to one another and
to the group, and a common belief that members’ needs will be satisfied through
their commitment to be together [12].

Community Detection in Static Networks Algorithms for community detection
in static graphs are usually looking for a “good” partition of the nodes. The main
problem is “what does ‘good’ really mean?”. Community detection methods can be
divided into three types:

Node-Based Methods. In these methods each node in a group needs to have
specific properties, meaning that two nodes are considered as members of same
community if their positions in the network satisfy some specific constraints. Clique
is an example for these types of communities, which works based on complete
mutuality in the group. Clique is a maximal complete subgraph of nodes in which
every two nodes are connected by an edge.

It is NP-complete to identify the maximum clique in a graph. One brute-force
approach to find the maximal clique is to scan all nodes in the network. Then,
for each node the maximal clique including that node is detected. Each node is
removed from the network when it is traversed once. This method works for small-
scale networks, but it is impractical for large-scale networks. The main strategy to
address this issue is to efficiently prune those nodes that are unlikely to be included
in a maximal clique.

In the proposed approach by Abello et al. [1] in each step a subset of network
is sampled. In this subset the maximal clique is identified using a greedy search
approach. The detected clique is used as the lower bound of pruning in the next
steps. If the largest maximal clique up to this step has p nodes, nodes with degree
less than p will be removed in the next steps.

There are other node-based methods which consider the reachability between
nodes. For instance, k-clique is a subgraph that the length of shortest path among
any two nodes is not greater than k, or a k-clan is defined as a k-clique that the length
of shortest path between any two nodes in the subgraph is not greater than k. The
difference of k-clique and k-clan is that the shortest path length in the k-clique is
defined on the original network, but for the k-clan it is on the subgraph.

There are also node-based approaches that need each community member be
neighbor of specified number of other members. For example, k-plex is a subgraph
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with n nodes, that each node has at least n− k neighbors. Generally such methods
are not suitable for community extraction from real-world social networks where
the nodes degree distribution is usually power-law.

The other constraint for a community can be defined as having more connections
to the other nodes inside the community than to those outside the community. For
example, LS set [4] is defined as a set of nodes C that any of its proper subsets has
more links to its complement within C than outside C.

Group-based methods. In the second class of methods for community detection
the focus is on the structure of the connections inside the groups. On contrary to
the node-based methods, in group-based methods nodes in the group can have low
connectivity as long as all nodes satisfy some defined criteria. One example of such
criteria is density of the edges. In the density based groups if the density of the edges
in a group of nodes is bigger than a threshold then that group of nodes is called a
community.

Network-based methods. In the network-based methods the goal is partitioning
the network to some disjoint groups by optimizing some criteria. For dealing with
this problem, some quality measures have been defined that give a score to a par-
tition. In the network-based methods a good partition is one which maximizes this
quality measure. One of the most commonly used quality measures is modularity
[13], and maximizing modularity in a greedy manner is one of the predominant
methods for community detection. Modularity Q is defined as

Q = ∑
i

(eii −a2
i ) (4.1)

where eij is the fraction of edges that connect nodes in community i to nodes in
community j, and ai = ∑j eij. But it has been shown that modularity maximization
is an NP complete problem [5], and thus most of the solutions for this problem are
based on approximation algorithms.

Community Evolution Tracking In studies of how communities evolve over time,
two main approaches have been used: (1) applying temporal information directly in
the community detection process, and (2) tracking communities over a number of
snapshots in time.

To take into account temporal information, recently, a new type of clustering,
called evolutionary clustering, that captures the evolutionary process of clusters in
time-stamped data was introduced. Chakrabarti et al. [7] address this issue in their
paper by proposing a framework called temporal smoothness. The output of this
framework is a sequence of clusterings, one for each timestep by considering two
distinct aspects: first, it should have low history quality, which means it should
be similar to the previous clustering in the sequence, and, second, it should have
high snapshot quality which means it should have high accuracy in clustering of
the current arrived data. The evolutionary clustering algorithm takes the similarity
matrices M1,M2, . . . ,Mt and produces the clusterings C1,C2, . . . ,Ct. Evolutionary
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clustering uses a cost function to trade off the history quality and the snapshot
quality. The cost function consists of two parts comprising snapshot cost and
temporal cost

α × SC(Ct,Mt)+(1−α) × TC(Ct−1,Ct) (4.2)

where the parameter α (0 < α < 1) is used to adjust the level of preference for each
of the two costs accordingly.

In the cost function snapshot cost measure SC, the quality of clustering Ct at
time t, with respect to Mt and temporal cost TC, determines how similar the current
clustering Ct is compared with the previous clustering Ct−1. For the snapshot and
temporal cost, the relation is the smaller the value, the better the quality. The
temporal smoothness framework attempts to find a clustering Ct that minimizes
Eq. (4.2).

Several evolutionary graph clustering methods have been proposed under the
temporal smoothness framework, for instance FacetNet [11], which extended the
soft clustering algorithm [21] from static graphs to dynamic graphs.

Another method for identifying relations between communities is constructing
the networks for each time step. First, communities are identified within each of
these networks, then relationships among communities on subsequent snapshots are
recognized. Hence, such an algorithm operates in two steps: (1) static community
detection on each snapshot, and (2) applying a matching function to recognize how
these static communities evolve over a number of time steps. We use this approach
for identifying organized crime groups evolution trace, as illustrated in Sect. 4.3.2.

4.2 Concepts and Definitions

This section introduces the basic concepts and definitions used in the following
sections [17]. We define the concept of offender group as a basic substructure of
a co-offending network and describe the analytic method for tracing how offender
groups evolve over their “lifecycle.” Finally, we define the concept of organized
crime group in terms of characteristics that discriminate possible criminal organiza-
tions from regular offender groups. The rationale for the applied characteristics is to
be in line with the respective definition in the Criminal Code of Canada.

Offender Group An offender group comprises three or more offenders who
collaborate in committing offences. This does not mean that each and every group
member participates (in an active role) in all offences committed. These groups are
not necessarily formed as the result of a predefined plan and also they need not
be active continuously. Their members have generally local clustering within larger
loosely connected networks, thus constituting a small group with varying degrees of
connection to other larger groups. In our model, Ct

1,C
t
2, . . . ,C

t
n refer to n offender

groups in the co-offending network at time period t.
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Group Activity For offender group Ct
i , the activity Θ t1,t2

i states how frequently
members of this group have committed offences during time period t1 compared to
time period t2.

Group Criminality Group criminality Φ t
i represents a measure for the degree of

seriousness of offences committed by members of offender group Ct
i during time

period t.

Active Offender Group Active offender groups have a history of continued
criminal activity over some longer time period. At1,t2

i represents an active offender
group that is active at time period t1 and is still active at time period t2.

Serious Offender Group An offender groups whose overall criminal activity at
time period t shows a high degree of serious criminal offences is called serious
offender group and is referred to by St

i.
In theory, the two concepts of organized crime group and offender group differ

in at least three basic aspects: (1) Group scale and motivation; (2) Time interval of
collaboration; and (3) Type of criminal activity. In practice, however, the distinction
between organized crime group and offender group is not always clear-cut and can
be challenging. To qualify as criminal organization, a necessary (but not sufficient)
condition is the commission of serious offence motivated by material benefit. While
the meaning of “serious offence” can be clearly defined in terms of offences
classified as indictable or hybrid offence or statute serious offence in the Criminal
Code / Controlled Drugs and Substances Act, the meaning of material benefit may
be interpreted in a narrow or in a broader sense.

4.2.1 Problem Definition

Problem 1: Organized Crime Group Detection Given Gt,Gt1 , . . . ,Gtn , the co-
offending networks extracted for the time intervals t, t1, . . . , tn, and α and β as group
activity and criminality thresholds, the goal is detecting organized crime groups
Oti

1 ,O
ti
2 , . . . ,O

ti
m embedded in the co-offending network at time period ti.

Problem 2: Organized Crime Group Evolution Trace Given detected organized
crime groups in the time intervals t, t1, . . . , tn, the goal is identifying the evolution
trace of Ot

a, E(Ot
a), which is a sequence Ot

a,O
t1
a1 ,O

t2
a2 , . . . ,O

tn
an

of related organized
crime groups over n consecutive time periods that shows the dynamic transforma-
tion, or evolution, of the organized crime group Ot

a since time period t.

4.3 Proposed Approach

In this section we first present the proposed approach for organized crime group
detection, and second, we describe the model for tracing organized crime group
evolution [17].
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4.3.1 Organized Crime Group Detection

Community detection is a prominent research topic in social networks. The nature
of organized crime groups, however, is different from other types of groups
like friendship or co-authorship groups. Organized crime groups are usually well
established with group membership being defined explicitly and strictly. Unlike
friendship or co-authorship communities, offender groups as well are characterized
by member relationships that are more systematic and organized to achieve material
benefit from committing crime. Therefore, detecting organized crime groups calls
for a stricter definition of community.

Based on fundamental discussions in the criminology literature, one can summa-
rize the important characteristics of organized crime groups as: (1) These groups
have at least three members and can be categorized as centralized or distributed
or hierarchical groups. Regardless of this classification, our focus is on offender
groups for which the density of their intra-group collaborations is higher than the
density of intergroup collaborations; (2) Organized crime groups are characterized
by a distribution of roles and different degrees of agency amongst individuals, where
groups can overlap and may have common members; (3) These groups commit
serious crimes with the perspective of gaining material benefit; (4) Their activity
is more continuous compared to regular offender groups.

For the purpose of organized crime group detection, in each time snapshot of
a co-offending network the following tasks are carried out in consecutive steps:
(1) Discover offender groups in the current network; (2) Compute the activity and
criminality of these groups in the time period between the current network and the
previous network based on the offences that were committed by their members; (3)
Assess the material benefit associated with each of the offences considered in Step 2;
(4) Identify those groups that qualify as possible criminal organizations; (5) Update
the groups evolutionary trace for the current time period. In the following each of
these steps is explained in more detail.

Offender Group Detection In the first step of the proposed method, offender
groups are built up from k-cliques. A group consists of adjacent k-cliques, sharing at
least k−1 nodes with each other. Since an offender group should have at least three
members, we assume k = 3. Each clique uniquely belongs to one community, but
cliques within different communities may share nodes. Hence, we have overlapping
groups with common members. For each offender group Ci, these members are
assigned as their kernels K(Ci). Kernels are the main members of an offender
group and are completely involved in the group activities. In the second step,
neighbor nodes connected directly to the kernels are added to the offender groups.
These nodes are called peripheries. Peripheries of an offender group Ci are denoted
by P(Ci).

Organized Grime Group Detection Activity and criminality of an offender group
are two key characteristics toward understanding the group structure. Below we
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present how these two measures are computed. Criminality of an offender group Ci

at time step t, denoted by Φt(Ci), is defined as

Φ(Ci) =
k=n

∑
k=1

ϕik

n
(4.3)

where ϕik indicates the seriousness of an offence ik that is committed by members
of group Ci at time step t. Let i1, i2 . . . , in be the offences in which members of Ci

were involved at time step t. Activity of the offender group Ci at time t1 with respect
to time t2, denoted by Θt1,t2(Ci), is computed as follows:

Θt1,t2(Ci) =
|Rt1(Ci)|
|Rt2(Ci)| (4.4)

where |Rt1(Ci)| and |Rt2(Ci)| denote the number of binary relationships (co-
offences) within offender group Ci at time steps t1 and t2, respectively.

In order to determine whether a detected offender group qualifies as a possible
organized crime group, activity and criminality of the group are considered. For this
purpose, we define two thresholds α-activity and β -criminality. A given offender
group Ci is considered as active group Ai, if Θ(Ci) > α , and as serious group,
if Φ(Ci) > β . We consider an offender group a possible organized crime group,
if it is serious and active. Meaningful values for α and β are to be determined
experimentally. Algorithm 1 outlines the pseudo-code of this approach.

Algorithm 1 Organized crime group detection
Require: (1) Crime event dataset

(2) Crime seriousness index
(3) Activity and criminality thresholds α , β

Ensure: Organized crime groups Ot
1,O

t
2, . . . ,O

t
m

1: /* Data Preparation */
2: For each set of crime incidents in the interval [t1, t2]
3: Extract the co-offending network
4: Detect offender groups Ct

1,C
t
2, . . . ,C

t
n

5: For each offender group Ct
i ∈ Ct

6: Compute the group activity Θ t1,t2
i

7: Compute the group criminality Φ t
i

8: Identify possible organized crime groups
9: For each possible organized crime Ot

i
10: Assess overall group material benefit
11: Apply the evolution trace model on Ot

1,O
t
2, . . . ,O

t
m
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4.3.2 Organized Crime Group Evolution Model

Like other communities, organized crime groups typically evolve over time. An
organized crime group may grow by admitting new members, shrink by losing
members, split into smaller groups, or a new group may form by merging existing
groups. Therefore, we devise a model that addresses all these aspects of organized
crime group evolution.

The model needs to determine which group at previous time has evolved into
which group at current time. Five phenomena can occur for a group in a single
snapshot: a community may survive, split, merge, emerge, or cease [16]. For this
purpose we introduce a matching function

match : G ×2G → G

where G denotes a set of groups and 2G is the powerset of G . For a given organized
crime group Ot

i and set of organized crime groups G t1 , let match(Ot
i,G ) yield the

group Ot1
i such that this group has the largest intersection with Ot

i above a given
threshold λ , as formally defined below.

match(Ot
i,G ) = Ot1

j with ∀ Ot1
k : Ot1

k ∈ G ∧
overlap(Ot

i,O
t1
j )≥ overlap(Ot

i,O
t1
k ) ∧

overlap(Ot
i,O

t1
j )> λ (4.5)

where, for two organized crime groups O,O′ ∈ G , we define

overlap(O,O′) = min

( |O∩O′|
|O| ,

|O∩O′|
|O′|

)
(4.6)

Using the matching function, we apply the following rules for tracking the evolution
of organized crime groups:

• Ot
i survives in the next time slot as Ot1

j , if Ot1
j = match(Ot

i,G
t1) and for each

Ot
k 	= Ot

i, Ot1
j 	= match(Ot

k,G
t1).

• Ot
i splits into groups Ot1

1 ,O
t1
2 , . . . ,O

t1
n , if there is enough overlap between each

of these splitted groups and Ot
i, and also (Ot1

1 ∪Ot1
2 ∪ . . .∪Ot1

n )∩Ot
i is above a

predefined minimum defined threshold.
• Ot

i merges with some other groups into Ot1
j , if Ot1

j = match(Ot
i,G

t1) and ∃ Ot
k 	=

Ot
i: Ot1

j = match(Ot
k,G

t1).
• Ot

i ceases, if none of the above scenarios happened.

• Ot1
j emerges, if ∀ Ot

i: Ot1
j 	= match(Ot

i,G
t1).

These rules are intuitive and easy to observe in the life cycle of groups, but they
are not yet rigorous enough. The main problem lies in defining the threshold λ . This
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threshold needs to be determined based on experimentation and observation, for
instance, by learning from existing histories for real-world organized crime groups.

4.4 Experiments and Results

This section describes the experimental evaluation of the proposed method for
organized crime group detection on the BC crime dataset [9]. A basic principle
in the characterization of “criminal organization” defined in the Criminal Code is
“the facilitation or commission of one or more serious offences, that, if committed,
would likely result in the direct or indirect receipt of a material benefit . . . by the
group or by any one of the persons who constitute the group.” Consequently, the
specific type of committed offences plays a crucial role in determining whether or
not an identified crime group is considered a possible organized crime group. In
abstract computational terms this aspect effectively constrains the search space to
be analyzed by the applied data mining algorithms, such that all offences that do
not qualify as a serious offence with associated material benefit are disregarded. In
general, knowledge discovery in databases and data mining is ultimately restricted
to the information encoded in the underlying datasets. This experiment was run on
historic anonymized data with limitations in quality (referring to attributes such
as completeness, consistency, and noise) as in all historic police datasets where
verification against the “grand truth” is often not feasible or even impossible so one
has to work with the data as it is. In practice, data mining algorithms, when used
with current and enhanced crime datasets, provide decision support for exploring
hand-entered data.

4.4.1 Offender Groups Characteristics

In this part we explore the characteristics of the extracted offender groups and
active offender groups. The crime data is partitioned into the following five time
snapshots, each of which represents a 12-month time interval: Mid-2001–Mid-2002;
Mid-2002–Mid-2003; Mid-2003–Mid-2004; Mid-2004–Mid-2005; and Mid-2005–
Mid-2006. Figure 4.1 shows the number of offender groups for different clique sizes
k. As expected, the number of offender groups decreases with increasing the clique
size. All experiments discussed below are based on clique size k equal or greater
than 3, the minimum group size required for a criminal organization under the
Criminal Code.

As a simple example, we assume an offender group C2
1 consisting of seven

members with ten co-offending links detected at time snapshot t = 2. We follow the
behaviour of this group at time snapshots t = 3, t = 4 and t = 5, and further assume
that in the snapshots 3–5 we have observed 2, 5, and 9 co-offences, respectively,
among members of group C2

1. Then, the computed activity for these snapshots would
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Fig. 4.2 Number of observed offender groups by different activity thresholds

be Θ 2,3
1 = 0.2, Θ 2,4

1 = 0.5 and Θ 2,5
1 = 0.9. Activity measures the relative activity of

a co-offending group as observed in a particular time snapshot, compared to the
number of distinct co-offences of that same co-offending group in the snapshot this
group was first detected. Threshold values are introduced as a flexible means to
adjust the level of observed activity above which co-offending behaviour is actually
taken into account for the analysis. Implicitly, higher levels of activity observed
over a number of consecutive time snapshots suggest a higher degree of stability of
a co-offending group. Figure 4.2 illustrates the number of offender groups in each
time snapshot for different activity thresholds α . An activity threshold α describes
the percentage of the structure of the co-offending group that remains unchanged
between time snapshots.

Even with 60 % of the structure of the co-offending group remaining intact
between snapshots (α = 0.6) still about 1 % of all the offender groups remain in
the list of active offender groups, meaning that some offender groups keep their
collaboration intact and unchanged over longer time periods.
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Fig. 4.3 Number of offender groups active over a range of time snapshots (which may include
inactive snapshots other than the first and the last snapshot in that range)

Active offender groups can be further characterized as continuously active
over several consecutive snapshots or as sporadic, with their activity occurring
at irregular time intervals with inactive intermediate snapshots.1 In assessing the
continuity of activities of offender groups, we study their criminal activity over
several time snapshots, applying activity thresholds. For instance, assume the
following scenario. Group C3

1 was detected at snapshot t = 3, and this group has four
members and four co-offending links. No activities were observed in time snapshot
t = 4. At snapshot t = 5, three co-offences were observed. For any activity threshold
equal to or less than 0.75, we can consider the time snapshot difference for group
C3

1 equal to two.
Figure 4.3 shows the number of offender groups observed over time periods with

one, two, three, and four years difference. The important point here is that with
increasing time difference the number of observed groups decreases exponentially.
Even with very low values for α only few groups can be observed over four
snapshots, and with high values for α no group can be observed over four snapshots.
However, one can also see that from one snapshot to the next one continued group
activity is more common, even for higher values of α . This finding supports the
theory of short-time collaborations of most offender groups.

According to [2], many criminal organizations are short-lived and comprised
of offenders with desired skills who form temporary networks to take advantage
of a crime opportunity. It is concluded [2] that these groups often dissolve
after exploiting the opportunity, looking for new chances which may need other
combinations of skills.

1We are aware of the possibility that apparent sporadic activity could result from group activities
not coming to the attention of the police during a given time period rather than from actual lack of
criminal activity during that time period.
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Another important aspect of active offender groups is the number of snapshots
in which a group is being active. Assume an offender group C1

1 having 4 members
and 5 co-offending links detected at time snapshot t = 1. We have observed 1, 0, 4,
and 5 co-offences, respectively, among members of this group in the time snapshots
from t = 2 to t = 5. Activity of this group for each of these snapshots would be,
respectively, Θ 1,2

1 = 0.2, Θ 1,3
1 = 0, Θ 1,4

1 = 0.8 and Θ 1,5
1 = 1. Then we conclude that

offender group c1
1 was active at three snapshots for any activity threshold equal to

or less than 0.2. Statistics of this phenomenon is illustrated in Fig. 4.4. Even with
small activity thresholds α , we do not have any offender group active in all time
snapshots. With median α , we observe only a few offender groups which were active
in three time snapshots. This may indicate that, due to reasons such as incarceration
or changing crime-committing tactics and trends, offender groups generally do not
maintain their co-offending activity for a long time period.

For considering a group active, we apply the activity threshold α = 0.3. This
means that a group is considered active if it maintains at least 30 % of its structure
unchanged in the next time snapshot.

Offender Groups Size It is concluded [2] that most criminal organizations are
quite small. Our study corroborates this result. Figure 4.5 provides the size
distribution for known offender groups and active offender groups, and Fig. 4.6
shows the frequency of committed offences per group. Most groups committed less
than 10 offences, but there are a few groups that committed even more than 100
offences during their life-cycle period.

Average group size for offender groups is 4.2 and for active offender groups
is about 6.5. When comparing active offender groups to offender groups, a larger
percentage of active offender groups has periphery members, and the average
number of periphery members is greater, which may indicate that the periphery
members play a more important role in the structure of active offender groups.
The maximum number of kernel and periphery members in active offender groups,
compared to offender groups, is significantly smaller. 7 % of the offender groups
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Fig. 4.6 Group committed crime frequency

have more than 10 and only 0.1 % have more than 50 members. In the active offender
group set, 8 % of them have more than 10 members, and there is no group with more
than 50 members. Of course, the size of these groups would likely be larger if all
offences (not just known offences) were available.

Offender Groups Evolution Offender groups, similar to any other form of social
community, typically evolve over time. An offender group may grow by admitting
new members, shrink by losing members, split into two or more groups, or a
new group may form by merging two or more existing groups. Given the limited
observable time span, it is difficult to quantify the whole lifecycle of offender
groups, not knowing their history previous to the first time step and their future
history past the last time step. Figure 4.7 shows the statistics of different evolution
scenarios in the five studied snapshots. For the matching function, the threshold
value 0.3 applies for considering a group as survived (that is, it continues to exist in
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Fig. 4.8 Number of shared members for the overlapping co-offender and active offender groups
by the number of pairs of overlapped individuals

any subsequent time snapshot) and a value greater than 0.2 and smaller than 0.3 for
split and merge, respectively. Groups with matching thresholds smaller than 0.2 are
considered as ceased groups (that is, not visible in any subsequent time snapshot).
Over the 5 years of data, about 4 % of all offender groups survive, but split and
merge events occur rarely, less than 1 % of the groups. About 96 % of the offender
groups are considered ceased, since we do not observe their activity in the next time
step, and 95 % of all groups are newly emerged ones.

Offender Groups Overlapping Figure 4.8 presents the distribution of size of
overlap for offender groups and for active offender groups. For both group types
the result is fairly similar. We see higher numbers for smaller sizes of overlap,
which was predictable due to the applied method which is designed based on
a strict definition of communities in the networks. Using a less strict definition
of offender groups means that many of the currently overlapping groups merge
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Table 4.1 Crime seriousness hierarchy and values (sample)

Crime type Hierarchy level Seriousness

Murder 1st degree 1 1

Abduction of person under 14 18 0.89

Production of heroin 41 0.74

Break and enter, residence 58 0.62

Theft of automobile 75 0.52

Theft over $5000—bicycles 83 0.46

into larger groups. In some cases, we observe several pairs of groups with more
overlap. This is also because the applied method even differentiates between groups
that have common periphery members but completely different kernel members.
Regarding serious groups, there is little observable overlap, which again confirms
their completely different structure compared to offender groups and active offender
groups.

4.4.2 Organized Crime Groups

For calculating offender group criminality, we apply the RCMP crime seriousness
index as delineated in the Operational Statistics Reporting System (OSR). This
index uses a seriousness hierarchy with 151 groups, where each crime type belongs
to one of these groups. For each crime type in the dataset, the corresponding seri-
ousness group level is scaled linearly, and these normalized values are interpreted
as indicators of the seriousness of offences. Table 4.1 shows a small sample of the
OSR crime seriousness hierarchy and corresponding seriousness values.

Figures 4.9 and 4.10 illustrate the number of offender groups in respect of
different criminality thresholds β , where β is equal to the summation of seriousness
of offences committed by members of a co-offending group divided by the total
number of those offences. About 30 % of all offender groups pass the threshold
β = 0.6, which means a larger percentage of the offender groups commit minor
crimes, which is intuitive. Finally, β = 0.8 identifies less than 6 % of the groups,
which implies that a small percentage of offender groups are consistently involved
in serious crimes.

Finally, the possible organized crime groups are extracted from active offender
groups. Applying activity threshold 0.3, a total of 313 groups are considered active
offender groups. Figure 4.10 shows the number of active offender groups for
different criminality thresholds. From 313 active offender groups 89, 39, 18, 8, and
5 groups result for criminality thresholds 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.
There is no active offender group having criminality equal to 1.

An important question is about the applied criminality thresholds for detecting
possible organized crime groups. For this purpose we use the average seriousness
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Fig. 4.10 Number of active offender groups in respect of different criminality thresholds

of all serious offences (defined in the PS serious crimes list), which is 0.6. In total,
39 groups have criminality higher than 0.6 which are considered possible organized
crime groups.

As an alternative approach for computing criminality of groups, we also test
the use of the crimes’ seriousness as defined in the Crime Severity Index (CSI)
list. The weights used in the CSI were developed by the Canadian Centre for
Justice Statistics, Statistics Canada and the Canadian law enforcement community
to empirically compare the relative seriousness of criminal offending. In the CSI
offences are weighted by the relative seriousness by which they are treated by
Canadian courts. Our experiments find that applying the CSI to analyze group
criminalities using our present method results in findings that are much skewed and
we do not see a distributed group criminality as for the other approach (OSR crimes
seriousness list). The reason for this is that in the OSR list (mapped to the OSR
list) crimes are assigned a seriousness value between 1 and 151. But in the CSI list
the maximum and minimum values are 7041.45 and 1.16, and 90 % of the crimes
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seriousness has a value less than 500. Therefore the group criminality results in a
skewed-left distribution, with very few active offender groups identified as serious
offender groups. Future research will need to develop an efficient approach to
normalize crimes seriousness to get more distributed group criminality.

In the 5 years of the crime data, using the soft constraint approach, there are 39
groups that are both active and serious and thus are considered possible organized
crime groups. Interestingly, most of these groups have high activity, which shows
the close relationship among their group members. The average size in this set of
groups is 4.7, which is much smaller than the size of active offender groups. This
point supports the theory that with increasing group criminality offender group size
decreases. Having less number of possible organized crime groups with periphery
members compared to active offender groups also implies that in possible organized
crime groups, the kernel members are not eager to collaborate with co-offenders
outside of the group’s core.

Hard Constraint Approach The “hard constraint approach” is the most basic test
to determine possible organized crime groups in the dataset since the approach most
closely matches the Criminal Code definition of criminal organization [9]. In the
hard constraint approach all crimes are categorized into a binary classification of
the two classes: (1) serious crimes with material benefit; and (2) non-serious crimes
or serious crimes that do not appear to provide the offender group with a material
benefit.

We use the list of serious offences prepared and provided by Public Safety
Canada (PS) officials. The list was developed as follows [15]:

• First, the list of all offences in the Criminal Code was taken as the preliminary set.
The criteria for seriousness—offences subject to indictment and having a penalty
of five or more years imprisonment—was then applied to the full set of Criminal
Code offences, with all offences not meeting this requirement removed from the
set. As some offences (commonly referred to as hybrid offences) may proceed
either by indictment or by summary process, all offences where indictment was
an option were included as in the list of section 467.1 “serious crimes.”

• The set of offences this decision rule generated was then further examined to
extract those offences with a “material benefit.” Under section 467.1 and current
case law “material benefit” could include an act that results in an intangible
gain such as to one’s criminal reputation as well as financial gain. The law on
point is still evolving so the current list of material benefit crimes represents an
approximation of material benefit offences based on examination of literature
and other information related to organized criminality in Europe and the USA.
Essentially, the list includes offences for which at least one known case of a direct
material benefit (e.g., cash payment) or intangible benefit (e.g., increases one’s
criminal reputation) exists in either of the two named jurisdictions.

The BC crime dataset used in this study which is retrieved from the RCMP’s
Police Information Retrieval System (PIRS) identifies a very large set of offence
category types. The PIRS list is a classification of calls for police services and
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contains information on offences and violations of many federal and provincial
statutes as well as violations of the Criminal Code. The PIRS criminal event
categories match the PS list of serious material benefit crimes to a substantial
but incomplete extent: 112 out of 192 PS categories have a matching PIRS crime
category. PS-identified offences that lacked a PIRS category match could not be used
in this study because we could not attribute any of the offences under study to those
PS categories. All PIRS offences that do not qualify as a serious offence resulting
in a material benefit are disregarded in our analysis of the crimes committed by an
offender group.

It should be noted that this study tests the feasibility of a new analysis technique
for exploring networks in criminal organization using a historical database. Future
work could use current data rather than historic data. With current data it would
be feasible to determine how police crime categories are translated into Criminal
Code sections in the process of laying charges and trying cases by linking police
records with court records. This is not possible at this time in British Columbia
with historic data. Future research could also make use of future modifications in
Public Safety Canada classifications or in Canadian Centre for Justice Statistics
(CCJS) data collection methods. As this study shows, there is value in improving
analysis techniques concurrent with advancements in data collection and changes in
information classification schemes.

The analysis presented in this section uses a binary classification of offence types
according to whether or not an offence constitutes a serious offence that results
in potential material benefit for an offender group committing the offence. All
offences that do not qualify as a serious offence resulting in material benefit are
disregarded in the analysis of the crimes committed by an offender group. This
analysis used a binary classification scheme that used the categories of offences in
the historic PIRS data and divided these offences as closely as possible to a list of
serious crimes resulting in material benefits used by Public Safety Canada [15]. The
Public Safety Canada list is crimes defined under relevant Criminal Codes which
correspond directly with offences prosecuted in Canadian courts. The PIRS list is a
classification of calls for police services and contains some categories that are not
provided in detail under the Criminal Code. As well the PIRS categories do not
contain all of the categories in the Public Safety Canada list. But the classification
used does divide police classification by seriousness resulting in material benefit.

The following presentation and discussion of results of the analysis is strictly
based on this binary classification of the hard constraint approach. We can identify
serious groups based on two aspects: (1) the ratio of committed serious offences
to total committed crimes, and (2) the number of committed serious offences. In
the first approach, an offender group is considered serious if P % of all offences
committed by this group is serious in the above sense. In the second approach, we
consider a group serious if two or more members of this group were involved in
more than N serious offences (where P % andN refer to adjustable threshold values
for the percentage and number of serious offences committed by a group, introduced
for the purpose of controlling the analysis). Further to the overall approach taken
here, another possible way would be to calculate the ratio of serious crimes to the
number of individuals in the group.
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Fig. 4.12 Number of observed active offender groups in respect of the proportion of committed
serious crimes

In the hard constraint approach to detecting possible organized crime groups,
we consider the ratio of a group’s committed serious crimes to total committed
crimes. Figures 4.11 and 4.12, respectively, show the number of offender groups
and active offender groups in respect of the percentage of committed serious
crimes. Considering different percentage thresholds, P = 30, P = 60, and P = 90,
respectively, 25, 10, and 8 % of the offender groups and 33, 9, and 4 % of the active
offender groups remain in the list.

Figures 4.13 and 4.14, respectively, show the number of offender groups and
active offender groups in respect of the number of serious crimes these groups have
committed over their life cycle. In the offender group set, about 59 % did not commit
any serious crime; 91 % of them were involved in less than five serious crimes
and only 0.02 % of the offender groups committed more than 10 serious crimes.
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Fig. 4.14 Number of active offender groups in respect of the number of serious crimes they
committed

The average number of serious crimes per offender group is 1.2. In total, 25 % of the
active offender groups did not commit any serious crime, while 73 % of these groups
committed less than five serious crimes during their life cycle and only 0.09 %
of the active groups committed more than 10 serious crimes. On average, each
active offender group has committed 3.7 serious offences. These results show that,
compared to the offender groups, active offender groups more frequently commit
serious offences.

In the hard constraint approach, based on the definition of organized crime in
the Criminal Code, we consider any active offender group that committed at least
one serious offence. In this case, out of 313 active offender groups, we end up with
a list of 236 groups. These 236 groups meet the minimum analytic threshold to be
considered possible organized crime groups. In total, 49 of these groups are involved
in only one serious offence and one of them committed 24 serious offences.
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4.5 Conclusions

Controlling crime necessitates the investigation of criminal networks, criminal
organizations and their illegal activities, constituting a serious undertaking for law
enforcement and the criminal justice system. We propose here a computational co-
offending network analysis approach for detecting possible organized crime groups.
We evaluate the proposed methods by examination of a large real-world crime
dataset. Our examination shows that although criminal group activity does not
occur as routinely as other criminal activities, which is intuitive, there is continuous
criminal collaboration inside crime groups. But for most of the groups such co-
offending behaviour does not persist over longer time periods. Our study also shows
that active offender groups typically have more peripheral members in contrast to
serious groups which tend to have fewer peripheral members and a tightly connected
kernel. This finding suggests that serious groups operate primarily from inside their
core membership.

Starting from a crime dataset with 4.4 million records and a co-offending network
with 150,000 actors, we were able to detect more than 18,000 offender groups,
including more than 300 active groups and 39 possible organized crime groups.
Using the hard constraint approach, our study identifies 236 possible organized
crime groups which committed one or more than one serious offences over the
observed time frame.

Our analytic approach provides potentially important insights into the ways in
which co-offending networks shape and affect criminal behaviour. Albeit, it should
be noted that co-offending networks do not necessarily identify all individuals of
an organization, simply because those operating in the background, who often
direct the activities of others, may not be visible in the data. Another possibility
is that some of the detected organized crime groups represent particular functional
components of larger criminal organizations that do not appear directly in police-
reported crime. For obtaining a more holistic picture of criminal organizations,
one must combine police-reported crime data with data from intelligence agencies.
This type of analysis can identify possible individuals or offenders for further
investigation or as part of a disruption strategy. Further, the approach taken here
primarily concentrates on organized crime groups with dense member relationships,
which is not always the case, especially not for certain forms of criminal networks.

A major advance could flow from undertaking research with current police data
that is linked to current court data. This could make it possible to use a definition
firmly based on the Criminal Code by developing a probabilistic concordance of
crimes with police categories of calls for police service. It would also be possible to
merge datasets of associations between persons that are not based on co-offending.
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Chapter 5
Suspects Investigation

In their efforts to identify potential suspects, crime investigators routinely draw
on partial knowledge as the result of incomplete information and uncertain clues.
Physical evidence gathered at a crime scene as well as accounts from victims and
witnesses may be incomplete and inconclusive. In cases with multiple offenders
jointly committing a crime, where individual suspects have been identified, the aim
of co-offending network analysis is to complement criminal profiling methods [3, 6]
so as to identify additional suspects faster and more effectively, thus decreasing the
cost and time of crime investigations.

A common example is organized crime [4] as a form of criminal activity
following a regular pattern, such as continuity or other spatiotemporal charac-
teristics in contrast to irregular criminal behaviour associated with opportunistic
crime. Law enforcement agencies often gain partial information about organized
crime structures, for instance, from arrested suspects and convicted offenders who
confess their affiliation with an organized crime group. However, uncovering the
whole structure of criminal organizations under investigation poses a considerable
challenge for law enforcement. Systematic approaches to co-offending network
analysis can help tremendously in such cases.

While many research studies in the literature use co-offending networks for crime
suspect investigation, for instance [18, 19], to the best of our knowledge, none of
these works define this problem formally by proposing an algorithmic solution.

In this chapter, we introduce the problem of crime suspect recommendation as
the goal to recommend the top-N additional potential suspects, given a partial set
of crime suspects and a known co-offending network. To address this problem, we
propose a random walk based method, called CRIMEWALKER, for link prediction
and scenarios with a set of given suspects instead of a single source user.

Section 5.1 explores related work, and Sect. 5.2 introduces a formal definition of
the suspect investigation problem. Section 5.3 then presents CRIMEWALKER, while
Sect. 5.4 describes the results of our experimental evaluation. Section 5.5 concludes
this chapter.

© Springer International Publishing Switzerland 2016
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5.1 Background

Generally, crime analysis captures a broad spectrum of facets pertaining to different
needs and using different analytical methods, namely: administrative analysis,
strategic analysis, tactical analysis, criminal investigative analysis, and intelligence
analysis.

Administrative crime analysis aims at reducing or preventing crime by reporting
local and regional statistics of crime rates to higher-ranking managers of law
enforcement agencies. Strategic crime analysis primarily focuses on planning
strategies for crime reduction and prevention. Tactical analysis tries to recognize
repeating crime patterns and serial crimes and identify potential suspects for such
crimes; it also makes predictions of future crime based on extracted patterns. Crimi-
nal investigation analysis focuses on collecting, testing, and keeping information of
known offenders in serious crimes. Finally, intelligence analysis aims at recognizing
relationships between criminal network actors in order to identify and arrest these
offenders. Intelligence analysis typically starts with a known crime problem or
identified co-offending network and then uses these resources to collect, analyze,
and compile information about a predetermined target [5].

Crime investigation serves the purpose of discovering the sole truth or, in case
of many potential possibilities, narrowing down the scope to the closest possibility.
An essential task in intelligence analysis is criminal profiling, the process of using
crime scene evidence to reconstruct missing information and reason about potential
suspects, including personality characteristics and psychopathology. In traditional
criminal profiling, information is gleaned from the crime scene and linked to the
behaviour of an offender during a crime. The source of such information can be
accounts by victims or witnesses and includes age range, gender, home location,
and other characteristics of an offender, which can then be used to aid police in
their investigations. More recently, formal reasoning approaches in support of crime
investigation have been studied [3, 6]. Specifically methods like Bayesian networks
and neural network are used for criminal profiling, which can lead investigators to
potential suspects.

Law enforcement and intelligence agencies have realized that detailed knowledge
about criminal networks can be invaluable for crime investigations [15]. PFS [19]
is a link analysis technique using shortest-path algorithms to identify the strongest
association paths among criminal network entities. In evaluation studies domain
experts conclude that the association paths identified by PFS algorithms are helpful
in 70 % of the cases. Xia [18] proposes MPFS, an extended version of PFS [19].
His approach uses belief propagation to update the belief of crime investigators as
to the probability for an individual member of a criminal network being an offender.
Building on existing partial information, this method is able to choose the next
member of a given network as a candidate for further investigation.

Since the work presented here builds on social recommendation methods for
suspect investigation, we also review some related work on recommendation in
social networks.
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Authors of [11] propose a random walk method (TrustWalker) which combines
trust-based and item-based recommendation. TrustWalker considers not only ratings
of the target item, but also those of similar items. The probability of using the
rating of a similar item instead of a rating for the target item increases with
increasing length of the walk. This framework contains both trust-based and item-
based collaborative filtering recommendations as special cases. The experiments
show that their method outperforms existing memory based approaches. We extend
this method to address the suspect investigation problem in this chapter. Note that
the input to TrustWalker is a single user, while the input to our problem is a set of
offenders already charged with the crime.

SocialMF [12] is a matrix factorization based approach for recommendation in
social networks. In SocialMF, the rating matrix is decomposed into a product of
latent feature vectors of users and items. To take the social network into account,
SocialMF considers the latent feature of a user to be close to the aggregate of the
latent features of his direct neighbors. SocialMF also supports trust propagation
between indirect neighbors in the social network.

5.2 Problem Definition

For the new crime event e, we assume that police charges a subset of offenders A
linked to the crime e. Then, police want to investigate additional suspects potentially
involved in e based on the existing information, that is, the known offenders A
who committed e and the relations between all offenders in crime dataset C as
represented by co-offending network G. The problem can now be specified in
abstract formal terms as follows [17]:

Given a crime dataset C , a co-offending network G(V,E) defined on C , and a new crime
event e with a set A of offenders already charged, recommend the top-N suspects not
included in A that are co-offenders in the crime event e with high probability.

This problem definition is novel, especially with its application in the domain of
criminal networks.

5.3 CRIMEWALKER

This section introduces, CRIMEWALKER [17], our random walk based model for
recommending top-N suspects for a crime event. Random walk based models for
recommendation in social networks have been investigated recently [8, 11]. These
methods exploit the random walk with restart (RWR) method for recommendation
in a social rating network. A social rating network is a social network in which
users are allowed to express ratings on some items besides being able to create
social relations to other users.
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In RWR, the goal is to recommend top-N nodes to a given node i. A random
walker starts to walk along the edges of the graph. At each node j, the random
walker stops and restarts the walk from i by a fixed probability c. The similarity
score of node j with node i is defined as the probability S(i, j) that the walker will
reach j where this probability is computed iteratively as follows:

Si = (1− c)PSi + cei (5.1)

P is the N × N transition matrix of graph G. ei is N × 1 starting vector that the
ath element is 1 and the others is 0, and Si is an N × 1 vector that the j element
of this vector shows the similarity of node i to node j. TrustWalker [11] extends
RWR to address the problem of link prediction. TrustWalker considers the stopping
probability c to be dependent on the rating pattern similarity of users. Also the
probability of random walk to restart increases with the increasing length of a walk
in TrustWalker. Due to the complexity of the model in TrustWalker, it actually
performs the random walks to approximate the probabilities of reaching different
nodes. We extend TrustWalker and propose CRIMEWALKER to address the suspect
investigation problem. Given graph G and offender u, CRIMEWALKER performs
a set of random walks on the co-offending network to compute the recommended
offenders suspicious of co-offending with u. For some offenders that random walks
do not converge we terminate the whole process after a fixed number of random
walks. Unlike TrustWalker, each random walk in CRIMEWALKER returns a node in
the co-offending network (a potential co-offender). The results of a set of random
walks are aggregated together to compute a list of top-N co-offenders.

Note that the input to CRIMEWALKER is a crime event e with a set A of already
charged offenders instead of a single offender. Therefore CRIMEWALKER has to
combine the results of recommended co-offenders for all the offenders in the input
data A into one single top-N result. We first discuss the details of a single random
walk in CRIMEWALKER. Then we present our proposed method to combine the
results of different input offenders.

5.3.1 A Single Random Walk in CRIMEWALKER

In CRIMEWALKER, a set of random walks are performed for a single offender u to
compute the top-N suspects recommended to be co-offending with u. Every single
random walk starts from u and continues walking on the co-offending network.
When the random walk stops, the offender node at which it stops is returned as the
result of this random walk. There are two probabilities that should be discussed in
the random walk. First the probability of stopping at a node v:

φv,u,k = Sim(u,v)× 1

1+ e−k/2
(5.2)
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Here, φv,u,k is the probability of stopping at node v at the kth step of a random walk
starting from node u. Sim(u,v) is the similarity measure introduced in Sect. 3.3.
Similar to TrustWalker, we punish long random walks by taking the length of the
random walk into account. Second, the probability p(w|u,v,k) of walking from node
v to node w in the kth step of the random walk starting from u is computed as follows:

p(w|u,v,k) = nv,w

∑
y∈Γv

nv,y
(5.3)

where nv,w is the strength (refer to Sect. 3.1.2) of the edge between v and w, which is
equal to the number of crimes they have co-offended. Also, Γv is the set of neighbors
of v in the co-offending network.

After performing a set of random walks, top-N suspects with the highest fre-
quency of being returned as the result of a random walk are considered as the top-N
recommended co-offenders for the input offender u. Note that CRIMEWALKER

approximates the probability p(v|u), the probability of reaching v in a random walk
starting from node u by the number of times v is returned as the result of the random
walk. In the following subsection, we propose our approach to combine the results
of different input offenders into a single top-N recommended suspects.

5.3.2 CRIMEWALKER for a Set of Offenders

Since we have a set of offenders as the input, we have to combine the co-offenders
recommended for every single offender to have a final set of recommended offend-
ers. For every offender a in the set A of already charged offenders, we compute a set
Ra of recommended suspects. Every recommended suspect ra ∈ Ra, is associated
with a probability p(ra|a) indicating the probability of reaching ra in a random
walk starting from node a. There are two ways to combine the recommended set
of suspect. In the first approach, the probability of each suspect being reached in
random walks starting from different charged offenders is aggregated to have an
aggregate probability:

∀u ∈ V,p(v|A) =
∑

a∈A
p(v|a)
|A| (5.4)

In other words, we can introduce a super node SA that has direct links to all nodes in
A (with equal weight), and perform a random walk based approach for the super
node as a single node. Another approach to combine the lists of recommended
suspects is to be more tough and assign high probability to suspects that are
recommended for more charged offenders. Basically, the probability of reaching
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every node from the charged offenders in A is multiplied to compute an aggregate
probability:

∀u ∈ V,p(v|A) = ∏
a∈A

p(v|a) (5.5)

These two approaches have two different conceptual meanings: the CRIME-
WALKER-Disj method favors suspects that are on average suspicious according
to the given set of offenders. This approach does not distinguish between the
following cases: first, a suspect is highly recommended to be co-offender of a
charged offender while not very likely to be co-offender of another charge offender.
Second, a suspect is moderately suspicious of co-offending with both charged co-
offenders. On average, both suspects are equally likely to be the co-offender and
CRIMEWALKER-Disj considers them to be equally suspicious of being the co-
offender. On the other hand, the CRIMEWALKER-Conj approach punishes the cases
where the suspect is not very likely to be co-offending with one of the charged
offenders. In other words, CRIMEWALKER-Conj favors the second sample case
more than the first case.

5.3.3 Similarity Measure for Offenders

We consider two common factors directly affecting the probability of two offenders
committing crimes together: How strong their relationship is, and how similar
they are regarding personal characteristics, including age, education, ethnic group,
gender, personal contacts, social background, etc.

The homophily principle states that individuals in a social network tend to be
similar to their friends [13, 16], specifically they often interact with others similar to
themselves. There are two driving factors: selection and social influence. According
to selection, people tend to create social relations to other people who have similar
personal attributes. Social influence leads to people adopting the attributes of their
friends in a social network. For example, Vancouverites are more likely to be
connected to other Vancouverites rather than to individuals of another city. People
usually choose the least distance necessary to get what they need, so their social
interactions tend to happen in close distance to their home; thus, one can expect a
higher probability for a relationship between two offenders if they live close to each
other.

To take the attributes of the offenders into account we define a similarity measure
based on the characteristics of the offenders including their age, sex, and living
location. Similarity of offenders u and v, Sim(u,v) is computed as follows:

Sim(u,v) = 1−
(

wd × Duv

Max(D)
+wa × Auv

Max(A)
+wg ×Guv

)
(5.6)
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where Duv and Max(D), respectively, denote the distance between the home
locations of u and v and the maximum distance among all pairs of offenders. Auv

and Max(A), respectively, denote the age difference of u and v and the maximum
age difference between all offenders. And Guv is equal to 0, if offenders u and v
have the same gender, and 1, otherwise. wd, wa, and wg, respectively, denote the
weight assigned to each of these three factors to balance their importance. In the
next section we describe how we compute the feature weights.

5.3.4 Feature Weights Computation

We use χ2 (chi-square) method to define the weight of the features. χ2 test
in statistics is used to test the independence of two events. The χ2 aggregates
the deviation of observed values from expected values, under the independence
hypothesis. For our case the independence hypothesis states that a feature plays
no role in forming a co-offending link. Pair of offenders (u,v) is in connected class
if they are connected in the co-offending network, or they are in non-connected
class if they are not connected. We associate a binary value for every feature of
offenders u and v. If they match on a feature this value is 1, otherwise it is 0. For
multi-value features such as home location distance a threshold function defines if
u and v matches or not. In other words, if home location distance of these offenders
is smaller than the predefined threshold they match, and vice versa. The χ2 measure
is computed as follows:

χ2 = ∑
i

(Oi −Ei)
2

Ei
(5.7)

where Oi is the observed frequency of samples in category i, and Ei is the expected
frequency of samples in category i. For each of the features we compute the χ2

score, and eventually use the corresponding normalized value as weight of that
feature.

5.4 Experiments and Results

In this section, we perform experiments on different variations of CRIMEWALKER

and the comparison partners to compare the effectiveness of each approach [17].

5.4.1 Experimental Design

We divide the BC crime dataset chronologically into 90 % train and 10 % test data.
For each crime event in the test data, we withhold an offender (one by one for every
offender in the crime event) and ask the recommendation model to recommend
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Table 5.1 Statistical properties of the DBLP
co-authorship network

Metric Value

Nodes of authors 663,620

Average degree 6.9

Average distance 3.64

Diameter 9

Effective diameter 4.49

Average clustering coefficient 0.65

Largest component percentage 0.85

top-N suspects who may have collaborated in this crime. N is set to 10 in our
experiments. The relative results for other values of K are consistent.

DBLP Dataset The crime data used are very sensitive and it is not available for
public, therefore, there is no chance to repeat the experiments, and we use the
DBLP bibliography 1 dataset as well. This dataset is an event based dataset similar
to the crime data. Using this dataset we generate a co-authorship network. For this
purpose papers which appeared in a 11-year period (1999–2009) are used. This data
is converted into a weighted co-authorship network, where each author is denoted
as a node, an edge between two authors shows a joint publication between these
two authors and weight of an edge between two authors represents the frequency
of their co-authorships. The network spanning 11 years contains 663,620 nodes and
4562876 edges. Statistical properties of the co-authorship network extracted from
DBLP data are presented in Table 5.1.

In the DBLP data set, we use papers published in 2009 with authors who have
had at least one paper in the period (1999–2008) as the test data, which includes
64,723 papers. We use the recall measure of the withheld offenders to evaluate the
quality of the recommendation model. Recall is the percentage of recommendation
queries in which the withheld user appears in the list of top-N recommended users.

5.4.2 Comparison Partners

We evaluate and compare the result of the CRIMEWALKER-Disj and CRIME-
WALKER-Conj method introduced in Sect. 5.3.2 on both crime data and the DBLP
dataset. To evaluate the meaningfulness of co-offending links strength, and also
the similarity of offenders, we perform experiments on different settings of our
proposed method. Following is the list of all the comparison partners in our
experiments.

1http://dblp.uni.rier.de/.

http://dblp.uni.rier.de/.
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CRIMEWALKER-DNW This setting of CRIMEWALKER-Disj ignores the weights
of edges in the random walk and also the similarity of nodes in stopping criteria.
Note that this method is the closest comparison partner to the RWR method.
However, unlike RWR, it has the advantage of punishing long walks.

CRIMEWALKER-DNS This version of CRIMEWALKER-Disj takes the links
strength into account but ignores the similarity of nodes.

CRIMEWALKER-Disj This is the full CRIMEWALKER-Disj.

CRIMEWALKER-CNW This setting of CRIMEWALKER-Conj ignores the weights
of edges in the random walk and also the similarity of nodes in stopping criteria.

CRIMEWALKER-CNS This version of CRIMEWALKER-Conj takes the links
strength into account but ignores the similarity of nodes.

CRIMEWALKER-Conj This is the full CRIMEWALKER-Conj.

AR This method is an association rule mining approach and is used as the baseline
in our experiments. In the following we briefly discuss the details of how we exploit
association rule mining in our problem.

Agrawal et al. [1] introduced the framework of association rules into the data
mining community. Representational aspect of association rules had been discussed
by Hajek et al. [9], but their focus was not on the algorithmic aspects of rule mining.
Different association rule mining approaches have been published in the data mining
literature such as Apriori [2] and FP-growth [10].

We now introduce the basic terminology of association rule mining. A transaction
is a set of items. An association rule is a rule in the form of A⇒B, where A and B are
sets of items. This rule is supposed to mean that the presence of A in a transaction
implies the presence of B with some probability in that transaction. Each rule has
two relevant measures for a set of transactions: support and confidence. Support
is the percentage of transactions that include both A and B in all transactions.
Confidence is the percentage of transactions including B in the set of transactions
that include A.

Association rules detect relationships between items considering co-occurrence
patterns in the transactions set. This method can be an appropriate approach for
recommendation where there exist transaction data and has been used widely in
this regard [7, 14]. Crime data can be interpreted as transaction data. In this case, a
transaction is a set of offenders involved in a crime and each item corresponds to an
offender.

Assume that we have a set of A of offenders involved in a crime event in the
test data, and we withhold offender u from this set. The rule A− u ⇒ u is capable
of recommending the withheld offender u. The rule mining method is interested
in subset of association rules whose heads are restricted to the withheld suspect
offender and the rule’s body is the other involved offenders in that crime. Moreover,
we also take any rule with the body consisting of any subset of A−u into account.
Meaning that, not only we consider rules with all the charged offenders in its body,
but also we consider the rules having a subset of the charged offenders in their
body. The rule mining recommendation method is looking for the strongest rules.
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Table 5.2 CRIMEWALKER results on
the BC co-offending network

Method Recall (%)

CRIMEWALKER-DNW 6.6

CRIMEWALKER-DNS 7

CRIMEWALKER-Disj 7.5

CRIMEWALKER-CNW 7.5

CRIMEWALKER-CNS 7.8

CRIMEWALKER-Conj 8.4

AR 5.0

For each target offender we choose the ten strongest rules based on the support and
confidence measures. If any of these ten rules suggest the target offender correctly,
the recall measure increases.

5.4.3 Experiments and Results

Table 5.2 shows the experimental results for the comparison partners on the
BC crime dataset. As shown in this table, random walk based methods clearly
outperform the association rule mining based method. We believe that this is mainly
due to the fact that random walk based methods consider the transitivity effect and
take the co-offenders of an offender into account for identifying potential suspects.

According to the results of CRIMEWALKER on the BC crime dataset, exploiting
the links strength and similarity measures improves the quality of recommendation.
In both versions of CRIMEWALKER taking the strength into account improves the
method performance. Comparing to CRIMEWALKER-DNW and CRIMEWALKER-
CNW, the recall of CRIMEWALKER-DNS and CRIMEWALKER-CNS are, respec-
tively, increased by 0.4 and 0.3 %. Although this is not a significant increase but it
shows that co-offending links strength has some meaning behind it. Using links
strength helps the CRIMEWALKER method to reach the offenders with higher
probability of criminal collaboration in the co-offending network. However, as
discussed in Sect. 3.2.2 vast majority of offender pairs only co-offended once and it
is not a distinctive feature to improve the method recall significantly.

Using offenders similarity measure enhances the CRIMEWALKER recall as well.
Recall of the CRIMEWALKER-Disj and CRIMEWALKER-Conj is increased by 0.5
and 0.6 % comparing to CRIMEWALKER-DNS and CRIMEWALKER-CNS. This
shows that offenders tend to collaborate with the offenders who are more similar
to them. Note that the available features for offenders are very limited which may
not provide enough information to compute the offenders similarity precisely.

The other problem is that crime data is usually very noisy and missing data
are common. When the police are entering information about offenders into their
database, the offenders are sometimes added to the database even when they are
unable to provide verifiable information, in which case the police officer will either
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Table 5.3 CRIMEWALKER results on
DBLP co-authorship network

Method Recall (%)

CRIMEWALKER-DNW 61

CRIMEWALKER-DNS 64

CRIMEWALKER-CNW 63

CRIMEWALKER-CNS 66

AR 23

fill in the data-field with a default value, such as the address of their own police
station for a home location address, or they will leave the field completely empty. In
such cases, people who either had default values, or missing data, were considered
not to have complete information, and thus were not able to participate in the
similarity function, or any of the benefits it may provide. The result was that half of
the population either had no data, or default values, thus only approximately 25 %
of the links could be assigned similarity values, severely hindering the benefit of the
similarity function.

Comparing CRIMEWALKER-Disj and CRIMEWALKER-Conj, we see that
CRIMEWALKER-Conj slightly outperforms CRIMEWALKER-Disj. This implies
that the method that punishes the recommendations in which one suspect is not
highly related to one of the charged criminals achieves higher recommendation
quality than the one considering the average among all given charged criminals.

Table 5.3 presents the results on the DBLP dataset. Again, the full model
outperforms the other comparison partners. Note that since we have no author
attributes, the similarity of nodes cannot be computed and therefore we only
have the co-authorship links strength. The CRIMEWALKER performance on the
co-authorship network is more than eight times greater than its performance in
the co-offending network. A co-authorship network has fundamental differences
comparing to a co-offending networks which are the reasons of the significant
difference in the CRIMEWALKER performance. For instance, an author always
prefers to initiate academic collaborations and publish her results, while an offender
always tries to hide her criminal collaborations and activities. This and other reasons
make predictive tasks difficult in the crime world comparing to the similar tasks in
the other domains.

5.5 Conclusions

Investigating crime can be a challenging and difficult task, especially in cases
with many potential suspects and inconsistent witness accounts or inconsistencies
between witness accounts and physical evidence.
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We present here a novel approach to crime suspect recommendation using a
random walk based method for recommending the top-N potential suspects based
on partial knowledge of the offenders involved in a crime incident and a known
co-offending network. The proposed model, CRIMEWALKER, extends the existing
random walk based model, TrustWalker, to address link prediction combined with
the ability to perform recommendations based on a set of offenders given as input
instead of a single offender. We discuss different ways of how recommendation
results for a single offender can be merged into one single top-N result.

Our experimental results, obtained from evaluating CRIMEWALKER on two
real-world datasets, BC crime dataset, and DBLP co-authorship network dataset,
demonstrate that using the random walk based method on co-offending networks
can produce high-quality suspect recommendations. Our experiments also show that
using the weighted co-offending network and similarity measure further improves
the quality of recommendation.
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Chapter 6
Co-offence Prediction

In this chapter, we propose a framework for co-offence prediction using supervised
learning. Even though supervised learning methods for link prediction have been
studied widely [11–13, 23], to the best of our knowledge, there is no study on
supervised learning for co-offence prediction.

Contrary to other social networks, concealment of activities and identity of
actors is a common characteristic of co-offending networks. Still, the network
topology is a primary source of information for co-offence prediction. Besides,
there are two other major information sources: environmental activity and criminal
activity. Offenders who are spatially close are socially close too as this increases
the chance of meeting each other and forming new criminal collaborations [21].
Further, common criminal experience (with the same type of offences) also affects
co-offending behaviour [25].

The proposed framework builds on criminological theories [2, 5, 15, 18, 20] and,
considering the available information on offenders, distinguishes three different
criminal cooperation opportunities: socially related, geographically related and
experience-related. We study the co-offence prediction problem in each of these
prediction spaces separately, achieving two goals. First, the heavy class imbalance
between positive (existing links) and negative samples (non-existing links) is
the main challenge of the link prediction problem [13]. The restriction of the
training and test data to the different prediction spaces reduces the class imbalance
ratio significantly, while keeping about half of the positive samples (co-offences).
Second, the prediction spaces enhance the understanding of co-offence patterns in
different criminal cooperation opportunities.

We define the prediction features in four different categories, social, geographic,
geo-social, and similarity, and evaluate their prediction strength both individually
and as a set. Social features indicate social closeness of offenders based on their
position in a co-offending network. Geographic features show spatial proximity
of offenders based on their residential locations and the location of offences they
have committed. Geo-social features combine social and geographic characteristics

© Springer International Publishing Switzerland 2016
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of offenders. Finally, similarity features capture homophily-based characteristics of
offenders. Evaluating features individually and also as a set shows that the geo-
social features we define outperform other features.

Several studies show that supervised link prediction approaches outperform
unsupervised methods [11, 13] that use only topological features [12]. In con-
trast to unsupervised methods, supervised learning methods can overcome the
class imbalance problem [13]. Exploiting the geographic information provided by
location-based social network services, some recently proposed link prediction
methods consider spatial characteristics of users [19, 24]. In [19], the authors
use information about places visited by users, in addition to their social network
features, to define prediction spaces which reduce the class imbalance ratio and
improve the prediction performance.

Co-offending networks are spatially embedded similar to location-based social
networks. However, the environmental effects on the formation of co-offence links
and accordingly our approach in defining offenders’ spatial closeness are different
from those in location-based social networks [6, 19, 24, 26]. The proposed super-
vised learning framework aims at the public safety and security sector. Although
there has been significant research on the reasons for involvement of single offenders
in crime [2, 17, 20], there is no comprehensive study on the causes for offender
collaboration. We argue that our study on co-offence prediction in different criminal
cooperation opportunities opens up a new door to the understanding of co-offence
patterns.

The co-offence prediction framework proposed in this chapter aims at advancing
the state of the art in crime data mining by making the following contributions:
(1) Defining co-offence prediction spaces to reduce the class imbalance; (2) Intro-
ducing novel prediction features for co-offence prediction; and (3) Experimentally
evaluating the proposed approach on large real-world crime data. Some of our main
findings in this research include: (a) Features evaluation has important implications.
For instance, preferential attachment is a strong predictor compared to the features
extracted from common friends in the network. This implies that the chance of
criminal collaboration increases more with the opportunity to commit crimes than
with trust or transitivity in the co-offending network. Crime location distance is
better predictor than home location distance, meaning that being criminally active
in the close districts causes new criminal collaboration; (b) Geo-social features are
better co-offence predictors than geographic and social features. This result implies
that we need to focus more on combined patterns in environmental and social
features to enhance crime reduction and prevention; (c) The experimental results
show that, although there is variability in the performance of different classifiers,
the probability of predicting a co-offence for similarity-related offenders is higher
than for socially and geographically related co-offenders.

In Sect. 6.1 related work is reviewed. Section 6.2 briefly introduces basic
concepts. Section 6.3 then explains the proposed co-offence prediction approach,
and Sect. 6.4 describes the prediction feature sets. Next, Sect. 6.5 presents our
experimental evaluation and results. Finally, Sect. 6.6 concludes this chapter.
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6.1 Background

This section discusses published works on crime prediction and link prediction.

6.1.1 Crime Prediction

Two main criminology theories claim that involvement in crime is the result of: (1)
an individual’s crime propensity; and (2) criminogenic features of the environment
to which an individual is exposed. While propensity towards crime has long
been studied, in the last few decades criminogenic features of the environment
received specific attention. Apart from individuals, spatial aspects increasingly gain
momentum, and environmental criminology [2] plays an essential role in crime
reduction and prevention tactics. New research areas emerge, like crime mapping
[10], geographic profiling [18] and crime forecasting [8, 14], that support growing
and imperative applications of this research field for law enforcement and criminal
intelligence agencies.

Crime prediction methods in the literature completely ignore the role of co-
offending in committing crime. Rather their goal is modeling observed crimes
spatially and temporally to predict the time and location of future crimes. For
instance in [14], the authors use a point-pattern-based transition density model
for crime space-event prediction considering criminal preferences from previous
crimes.

Given partial information about a crime incident, in Chap. 5 we propose CRIME-
WALKER an unsupervised method for top-N suspect recommendation, which
applies a random walk based method on co-offending network. In the suspect
investigation problem the goal is finding offenders who most likely collaborated
with a set of charged offenders. For this purpose CRIMEWALKER computes the
probability of collaboration of pair of offenders given their characteristics, and
aggregate these probabilities to recommend the top-N suspects. But in the co-
offence prediction problem the goal is computing the probability of every pair of
offenders who have not collaborated yet considering the patterns of all co-offences
in the training data.

As concluded in the link prediction literature, supervised methods always out-
perform the unsupervised competitors. To the best of our knowledge, the proposed
approach in this chapter is the first supervised learning framework for co-offence
prediction.

6.1.2 Link Prediction

Link prediction is an important aspect of social network analysis to better under-
stand the network structure. Link prediction methods can be used to extract missing
information, identify hidden interactions, evaluate network evolution mechanisms,
and beyond.
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Most unsupervised link prediction methods [12] rely solely on the network
topology and assign scores to potential links based on structural proximity measures
such as node neighborhoods or path information. On the other hand, any classifica-
tion method can be used for link prediction [11, 13, 23]. In a detailed study [13],
Lichtenwalter et al. examine key factors in the link prediction problem, and propose
a framework for supervised link prediction.

More recently, location-based social networking services made it possible to
study and predict spatial behaviours of social network actors. Wang et al. [24],
using trajectory and communication patterns of users, concluded that combining
mobility and network features enhances the link prediction results. Scellato et al.
[19], based on their study of the link prediction problem in online location-based
social networks, conclude that using information about places people visited boosts
the link prediction performance.

Although the challenges and concerns of our study are similar to other link
prediction studies [11, 13, 19, 24], there are fundamental distinctions as well.
Crime data and co-offending network characteristics are inherently different from
affiliation networks, such as co-authorship networks or mobile phone networks.
Although environmental activity plays an important role in creating new links, these
activities are also very different from location-based social networks. Therefore the
feature or prediction spaces defined based on criminological theories are different
from the ones known in the literature. After all, the co-offence prediction framework
proposed in this chapter and supported by experimental evaluation is an innovative
application of social network analysis that offers a new perspective for crime
reduction and prevention strategies.

6.2 Concepts and Definitions

In this section, we explain basic concepts and definitions.

6.2.1 Notations

For co-offending network G(V,E) and u ∈ V , let Γ n
u be the subset of offenders in

V such that their shortest path distance from u is n. Pu = (p1
u,p

2
u, . . . ,p

K
u ) denotes

the frequency of crimes committed by u for each of k crime types in the dataset.
The subset of offenders who have committed p crime types that coincide with crime
types committed by u is referred to by Θ p

u .
For u in G(V,E), let Hu = {h1

u,h
2
u, . . . ,h

k
u} denote the known home locations

of u, and Cu = {c1
u,c

2
u, . . . ,c

l
u} denote the known crime locations for all offences

committed by u. Finally, let Δu = {δ 1
u ,δ 2

u , . . . ,δ k
u} denote the time periods (intervals)

δ i
u = [ti1

u , t
i2
u ] that u lived in each of the k home locations given by Hu. D(hi

u,h
j
v) is

the geodesic distance between hi
u and hj

v.
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6.2.2 Offenders’ Activity Space

The activity space of an offender has two main components: Nodes and Paths.
Activity Nodes refer to locations a person frequently visits in the course of daily
routine activities. Activity Path represents a common route for a routine trip
to a frequently visited location. Crime Pattern Theory [3] contends that, rather
than venture into new areas to commit crimes, offenders act on criminological
opportunities arising in areas they are familiar with, more specifically, areas that
are part of their activity space. We discuss more in depth about activity space in
Chap. 7.

Inverting research on crime pattern theory [2], geographic profiling [18] seeks to
either estimate the location of the residence of an offender or to extrapolate locations
where an offender is likely to commit future crime. Centrography is one of the most
common search approaches for criminal investigation [18]. In [18], Rossmo shows
that some offenders live close to the centroid of their crime locations. The “Circle
Hypothesis” by Canter et al. [4] defines a circular area around the location of the
first offence in a series of crimes to indicate the general area of an offender’s home
location.

In this research our goal is using offenders’ environmental activities for co-
offence prediction, while it does not fit with the bases of works in geographic
profiling. Considering the definitions in the literature and the general limitations
in the crime data we use a simple and safe definition in this regard. For a given
offender u with home locations Hu, AR

u = {a1
u,a

2
u, . . . ,a

k
u} states the activity space

of u, where ai
u is defined as a circle of radius R with hi

u at its center. We define
the common activity space of two offenders as the area in which both are active
simultaneously, if their activity spaces overlap at any time. For offenders u and v,
AR

u,v = {a1,2
u,v ,a

1,3
u,v , . . . ,a

p,k
u,v} is their common activity space, that is

AR
u,v = {ai,j

u,v| ai
u ∩aj

v 	=∅∧δ i
u ∩δ j

v 	=∅}.

Intuitively, ai,j
u,v represents the intersection of the activity space of u and v during

a time they were both active at ai
u and aj

u. The offenders who live in ai,j
u,v and the

crimes in this area are referred to by the set χ i,j
u,v and the set φ i,j

u,v, respectively.
To complement our simple definition of activity space, in Chap. 7 we propose an

approach to detect offenders’ activity space in a probabilistic way.

6.2.3 Geographic and Network Proximity

Neighborhood greatly influences the formation of communities and social networks.
Hence, social problems are often studied in connection with neighborhoods. Many
researches suggest that crime is as well strongly linked to geographical charac-
teristics. Criminology researches use spatial analysis of crime to understand the
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Fig. 6.1 Spatial distance of co-offenders in the GVRD
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Fig. 6.2 (a) Home location distance of co-offenders; (b) Home and crime location distance of
offenders

distribution of crime incidents and why crime occurs in some places but not others
[2, 18]. Figure 6.1 visualizes home locations of offenders for one of the connected
components of the BC co-offending network. The fact that clusters can be seen in
this visualization implies that many pairs of co-offenders live in the same city.

Generally, it is important to take into account the spatial dimension of co-
offending relationships. We have studied this aspect for all observed criminal
collaborations in the BC crime dataset. About 39 % of the co-offenders live less than
2 km apart, and about 63 % of them live less than 10 km apart. Figure 6.2a shows the
probability distribution of home location distance for co-offenders. The probability
distribution of home and crime location distance of offenders is shown in Fig. 6.2b.
Forty six percent of the crime incidents happen in less than 2 km distance from the
home location, and 70 % of the crimes happen within a distance of less than 10 km.
We conclude that a large percentage of the crime incidents are located close to the
offenders’ residence. While the maximum values for co-offenders home location
distance and offenders’ home and crime location distance are about 1000 km, the
medians of these distances are only 5 km and 3 km, respectively. This confirms that
co-offenders tend to be geographically confined.
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In [21], it is concluded that socially close offenders are spatially close too,
meaning that offenders who are close in the co-offending network have more overlap
in their activity spaces too. Criminological theories and the discussed experimental
results motivated us to focus more on geographic and geo-social features, besides
general social features extracted from network topology for co-offence prediction.

6.2.4 Problem Definition

A co-offending network G(V,E) refers to all co-offences within time period [t0, tn]
associated with the underlying crime dataset. For any time t ∈ [t0, tn], one can derive
Gt(Vt,Et) as a substructure of G, which is a co-offending network, by restricting
to all crime incidents up to time t. For Gt(Vt,Et) we now define a potential co-
offence at time t+ 1 as any pair of offenders (u,v) such that (u,v) /∈ Et, meaning
that offenders u and v have not committed any crime together prior to t + 1. A
potential co-offence (u,v) is in the positive class, if (u,v) ∈ Et+1, and it is in the
negative class, if (u,v) /∈ Et+1. The co-offence prediction task [22] is to predict for
each potential co-offence in Gt if it belongs to the positive class or the negative
class.

Co-offence prediction can be viewed as a link prediction problem for co-
offending networks. This aspect is modeled by means of a binary classification
problem that adopts a set of prediction features as described in Sect. 6.4. The
major challenge in any link prediction problem is the heavily skewed distribution
of negative and positive classes. Contrary to unsupervised methods, supervised
methods learn class distributions to increase classification performance [13].

6.3 Supervised Learning for Co-Offence Prediction

In this section, we propose a novel analytic framework for solving the co-offence
prediction problem [22].

6.3.1 Criminal Cooperation Opportunities

Because of all obvious concerns about committing crimes, offenders do not select
their collaborators accidentally. Considering offenders’ choices and selections
opportunities, any co-offence can have social, environmental, or experience related
cause. In order to quantify how offenders form a criminal cooperation, for each
offender u we define three sets of potential co-offenders:
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We distinguish three basically different opportunity spaces for criminal coopera-
tion defined as follows:

Socially-Related Social interactions influence the behaviour of individuals. Learn-
ing illegal behaviour associated with criminal activities depends on informal
networks and peer interactions. Sutherland, in the theory of differential association
[20], explains individual criminality with a social-psychological process of learning
crime through interaction with social groups. According to [20], criminal behaviour
is the result of learning an excess of definitions favorable to crime. Offenders
use social interactions for sharing information, recruiting young criminals [17]
and transferring skills. Although co-offending networks are generally considered
short-lived networks, they constitute an important source of criminal cooperation
opportunities. In our definition, socially related cooperation opportunities for an
offender u, denoted by Su, arise from offenders v such that their distance in the
co-offending network is not greater than N, excluding the direct neighbors of u:

Su =

{
(u,v) : v ∈

(⋃
i≤N

Γ i
u

)
\Γ 1

u

}

Geographically-Related Activity space and living environment of offenders have
major effects on their criminal decisions and are key factors in forming collaboration
opportunities [2, 7]. Offender u is considered geographically related to any offender
v, if they have a common (overlapping) activity space, but they are not connected to
each other directly in the co-offending network.

Gu =

⎧⎨
⎩(u,v) : v ∈

⎛
⎝ ⋃

ai
u∈Ar

u

χ i
u

⎞
⎠\Γ 1

u

⎫⎬
⎭

Experience-Related Network studies on offenders have generally observed evi-
dence of homophily such as criminal experience [25]. This is so consistent that
group homogeneity is considered as one of the key characteristics of co-offending
[25] Having similar criminal experiences increases the chance of forming new
criminal collaborations between offenders. This can happen via implicit networks
or due to demand for specific criminal expertise. All pairs of offenders who have
similar criminal experience but are not directly connected to each other in the co-
offending network are categorized into this class:

Eu =

{
(u,v) : v ∈

(⋃
i≥P

Θ i
u

)
\Γ 1

u

}

We use the above criminal cooperation spaces to define the spaces which cover
the prediction candidates. Prediction space division has two advantages: First, it
helps to reduce the class imbalance ratio. Second, one can gain a clearer under-
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standing of the effects of each of these categories on new co-offence formation. For
Gt(Vt,Et) we generate these three spaces for the co-offence prediction task:

SR This space includes all links emerging between a pair of offenders that are
socially related: SRt = {∀u ∈ Vt :

⋃
u Su}. In our experiments for constructing the

SR space, we consider N = 2. In other words, a pair of offenders who are exactly
2-hops apart are added to this space.

GR that includes all links between offenders who are geographically related but
not socially related: GRt = {∀u ∈ Vt : (

⋃
u Gu) \ Su}. For constructing the activity

space of offenders which defines if two offenders are geographically related we use
r = 2 km.

ER that contains all pairs of offenders that are experience-related but not socially
related: ERt = {∀u ∈ Vt :

⋃
u Eu \SRu}. For creating the ER space, we apply P = 2,

meaning that (u,v) are considered experience-related offenders if both committed
at least two crimes of the same type.

6.3.2 Reducing Class Imbalance Ratio

For a network G(V,E) the number of links E is often O(|V|), but the number of no-
existing links is often O(|V|2). Accordingly, the prior probability of link formation
is very small. Since the goal of supervised learning is achieving high precision,
class imbalance in the training dataset leads to overfitting to negative samples which
reduces the recall of positive samples. Note that in the co-offence prediction task
high recall of the positive class (co-offences) is critical, so that overcoming the class
imbalance is essential.

In the experimental setting defined in Sect. 6.5.1, the number of negative samples
is 850 M while the number of positive samples is only 11 k. Therefore, the class
imbalance ratio, the ratio of negative samples to positive samples, is about 77 K.
Using the prediction spaces to reduce the training and test dataset can effectively
reduce the class imbalance. In [19] an efficient prediction space division schema
for location-based social network is proposed, but it does not apply to co-offence
prediction where environment activity of offenders is different than location-based
social network users. Furthermore we consider the homophily effects, in terms of
criminal activity similarity, on forming new link which is not considered in the
approach proposed in [19]. Although reducing class imbalance is an important
objective, the other main concern is keeping as many positive samples as possible.

Restricting the dataset to samples with short graph distance is the most effective
solution for the imbalance problem. In the SR space increasing N affects the
number of negative samples set superlinearly, because we expect to see more co-
offences between offenders which are close in the co-offending network. Figure 6.3a
demonstrates the probability of a positive sample in the SR space for different values
of N of the network distance. The probability does not grow linearly as N increases,
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meaning that similar to other type of social networks [13, 19] majority of positive
samples are at a closer network distance. For the maximum value N = 27 there
are 204 M negative samples. But changing this to N = 2 decreases the number of
negative samples to 47 K, while keeping 25 % of the positive samples.

Applying different constraints related to the other prediction spaces also helps
to reduce the class imbalance ratio. Figure 6.3c shows the probability of a positive
sample in the GR space for different values R of the radius of the activity space. With
R = 2, R = 10, and R = 100 km the GR space covers cumulative 31, 51, and 75 % of
the positive samples. Figure 6.3b shows the probability of a positive sample in the
ER space for different values of P. With P = 2 of the same crime type, P = 5 and
P = 10 km the ER space includes 29, 13, and 5 % of the positive samples. Applying
R = 2 km and P = 2 reduces the 850 M negative samples in the dataset to 8 and
82 M, respectively, for GR and ER spaces. With these constraints we can keep 31
and 29 % of the positive samples in the GR and ER spaces.

As demonstrated in Fig. 6.3d, the original imbalance ratio of 77 K for the whole
prediction space reduces to 40, 2700, and 3400, respectively, for SR, GR, and ER
spaces. While in each of three spaces roughly we can keep approximately the same
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percentage of positive samples (26, 31, and 29 % for the SR, GR, and ER), we see
that the class imbalance reduction is better in the SR space. In total we are able
to maintain half of positive samples for training, meaning that the likelihood of
predicting a co-offence successfully increases significantly.

6.4 Prediction Features

Prediction features are divided into four categories: social, geographic, geo-social,
and similarity features. This section describes how these features are extracted [22].
Features are defined formally in Table 6.1.

6.4.1 Social Features

The social features set includes all features that are derived using only the
topology of the co-offending network and the position of offenders in the network.
Preferential is defined as the product of the node degrees of two offenders, meaning
that the more connected an offender is, the more likely he forms new criminal links.
Common denotes the number of neighbors two offenders have in common. Overlap
divides the number of common neighbors by the overall number of neighbors of
two offenders as a normalized indication of common neighbors effect. Adamic [1]
assigns higher weight to the common neighbors with smaller node degree.

6.4.2 Geographic Features

With increasing overlap of the activity space of offenders the chance of forming
new criminal collaboration increases. Home locations distance, HDN, is the average
distance between the current and past home locations of two offenders. HDT
weights home location distance by the time two offenders lived in the corresponding
locations. Committing crimes in the same neighborhood may cause a criminal tie
between offenders. CDN is the average crime location distance of two offenders.

6.4.3 Geo-Social Features

Geo-social features combine the social and geographical characteristics of offend-
ers. Common activity space of offenders directly affects their behaviours. Being
active in an area with many offenders living there can increase the chance that
offenders meet each other directly or indirectly and engage in co-offending. OCT
denotes the number of offenders living in a common activity space of two given
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Table 6.1 Prediction features

Social features

Preferential |Γ 1
u |× |Γ 1

v |
Common |Γ 1

u |∩ |Γ 1
v |

Overlap |Γ 1
u |∩Γ 1

v
|Γu1|∪|Γ 1

v |
Adamic ∑

z∈Γ 1
u ∩Γ 1

v

1
log(Γ 1

z )

Geographic features

HDN

i=m
∑

i=1

j=n
∑

j=1
e
−D(hi

u ,h
j
v)

λ

|Hu|×|Hv|

HDT

i=m
∑

i=1

j=n
∑

j=1
e
−D(hi

u ,h
j
v)

λ ×|(δ i
u∩δ j

v)|
|Hu|×|Hv|

CDN

i=m
∑

i=1
∑j=n

j=1 e
−D(ci

u ,c
j
v)

λ

|C(u)|×|C(v)|
Geo-social features

OCT
i=p
∑

i=1

i=k
∑

j=1
|χ i,j

u,v|
&
OCTT

i=p
∑

i=1

i=k
∑

j=1
|χ i,j

u,v|× |δ i
u ∩δ j

v|

OCN
i=p
∑

i=1

i=k
∑

j=1
|χ i,j

u,v| : [t0, t]

CCT
i=p
∑

i=1

i=k
∑

j=1
|φ i,j

u,v|

CCTT
i=p
∑

i=1

i=k
∑

j=1
|φ i,j

u,v|× |δ i
u ∩δ j

v|

CCN
i=p
∑

i=1

i=k
∑

j=1
|φ i,j

u,v| : [t0, t]

Similarity features

Age |Age(u)−Age(v)|

Gender

{
1, if Gender(u) = Gender(v)

0, if Gender(u) 	= Gender(v)

Ethnic

{
1, if Ethnic(u) = Ethnic(v)

0, if Ethnic(u) 	= Ethnic(v)

CrimSim

K
∑

i=1
Pi

uPi
v√

∑K
i (Pi

u)
2×
√

∑K
i=1 (P

i=1
v )2
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offenders. In the definition of common activity space time is implicitly restricted
to δ i

u ∩ δ j
v. OCTT boosts OCT if two offenders are active for a longer period of

time. Without any restriction, OCN denoted the number of offenders who live in a
common activity space anytime in the time interval [t0, t].

Characteristics related to the quantity of crimes in the common activity space
provide another set of geo-social features. A crime hotspot located within the
common activity space of offenders may increase the chance of collaboration among
these offenders. CCT states the number of crimes in the common activity space of
two offenders, where, similar to OCT, the time is restricted to the period over which
both offenders are active simultaneously. CCTT weights the time interval of two
offenders being active. And CCN refers to the total number of crime incidents in the
common activity space.

6.4.4 Similarity Features

The homophily principle states that individuals tend to associate themselves with
others in a social network who are similar [16]. This is also a very well-studied topic
for co-offending [25]. Age difference, ethnic group similarity and gender similarity,
represented by Age, Ethnic and Gender, are three features in this category. Finally,
CrimSim also expresses similarity of criminal experience based on committed crime
types.

6.5 Experiments and Results

In this section, we present the experimental evaluation.

6.5.1 Experimental Design

The special nature of co-offending networks makes the co-offence prediction a
difficult task. Offenders not only do hide their illegal activities but their accomplice
relationships are usually short-lived [17].

For our experiments [22], we divide the dataset into two disjoint sets of incidents,
one for the first 50 months and the second one for the last 10 months. We use
this setting to include large enough portion of data in the training set to learn
criminal collaboration patterns, and the most possible positive samples in the test
set. Excluding noisy data, such as traffic related offenses, the number of incidents
for the aforementioned time periods are 1.8 M and 800 K, respectively. Considering
only offences with more than one offender reduces these numbers to 67 and 17 K.
We extract the co-offending networks corresponding to each of these time periods.
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Next, criminal cooperation opportunities are identified and each pair of potential co-
offences is assigned to one of the three prediction spaces: SR, IR, or ER. Eventually,
the prediction features of each pair of potential co-offenders are extracted.

We use the open-source machine-learning library Weka [9] for different classifier
building. The performance of classifiers and single features prediction are assessed
based on the Receiver Operating Characteristics (ROC), which shows the trade-
off between the true positive rate over the false positive rate. The area under the
ROC curve (AUC) is an appropriate measure for comparing two ROC curves. AUC
measures the probability that a classifier ranks a randomly chosen positive sample
higher than a negative sample.

While there are various definitions of offender activity space in the literature,
based on the available information on offenders in the dataset, we use a simple
definition: a circle of radius R with the home location of an offender in the center of
the circle. Common activity space of two offenders is defined as the intersection
of their activity space and is used for defining geo-social features. As there is
no consensus in the criminology literature about the appropriate value of R we
tried different values of R, ranging from 1–10 km. Interestingly, for all features
R = 2 km maximize the prediction performance, which we therefore choose in our
experiments.

6.5.2 Single Features Significance

We compare the significance of different features described in Sect. 6.4 in each of
the prediction spaces [22]. This is important to diagnose which features in each
prediction space play a more important role in co-offence prediction. For this
purpose, we compute the feature values for all negative and all positive potential co-
offenders. Then, using a range of decision thresholds and computing the false/true
positives ratios, we generate the ROC curves for each single feature as presented in
Fig. 6.4c. Note that the social features can be extracted only for SR space.

As shown in Fig. 6.4a, in the SR space, the Preferential feature is the best
predictor with AUC value 0.82 and is superior to other social features. The
performance of Adamic and Jaccard is worse than a random predictor. This shows
that being a frequent offender and having broader criminal relationships, rather
than common relationships, increases the chance of engaging in new criminal
cooperations. Following Preferential are geo-social and geographic features CDN,
OCN, CCN, and HDN, with AUC values between 0.74 and 0.79. The similarity
performance of features is lower than the mentioned set.

In the GR space, performance of most of the features is weaker than their
performance in the SR space. This is not unexpected for geographic or geo-
social features, where in the negative potential class we gather all pairs that are
geographically close and the predictor cannot be as successful as in the SR space.
Nevertheless, the AUC values of these features fall within the range 0.60–0.70.
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Fig. 6.4 Single feature significance in three different prediction spaces. (a) SR, (b) GR, (c) ER
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Compared to the SR space, in the ER space geographic and geo-social feature work
better. Their AUC values are between 0.72 and 0.86.

In the similarity set features generally Gender works as good as a random
predictor in all three spaces. Age and ethnic have similar performance in the ER
and GR spaces. But in SR, AUC values of these two features are 0.66 and 0.60. This
shows that in the SR space one can see stronger signs of the homophily principle in
forming new relationships. CrimSim has its best performance in the GR space with
AUC value of 0.71.

Counterintuitively, all time-based features perform weaker than the original
version of the corresponding feature. For instance, in the SR space, the performance
of HDT compared to HDN, OCT and OCTT compared to OCN, and, finally, CCT
and CCTT compared to CCN, all drop down to five percent. The same trend applies
to the other prediction spaces. Parameter regularization of time-based features for
promoting their prediction strength is subject to future research. An interesting
pattern in all spaces is that CDN outperforms HDN, which shows that being
criminally active in areas that are in close proximity is a stronger indicator for
forming new criminal collaboration than living in close proximity to each other.

6.5.3 Prediction Evaluation

The previous section analyzes the performance of individual features. Now, how
good works a supervised method using a group of extracted features? Naturally,
one would expect to see performance improvements. For this purpose, we use four
different classification methods: Naïve Bayes, J48 (equivalent to C4.5), random
forests (ten trees, each constructed while considering 4 random features), and
bagging (ten bags).

Similar to the work in [11, 19], we run 10-fold cross validation over 10 different
randomly sampled training sets for each of the three prediction spaces, GR, SR, and
ER. We consider the average values of AUC, and precision and recall over positive
samples. The prediction results are listed in Table 6.2. One can see variability in the
different classifier performances, and also in the results for the different prediction
spaces. All classifiers for all spaces outperform single features. Generally, prediction
works best in the ER space. Bagging and random forest classifiers work better than
the other two classifiers, and Naïve Bayes is the weakest one in all spaces.

Two ensemble methods, bagging and random forest classifiers, work better than
the other classifiers and Naïve Bayes is the weakest one in all spaces. In ensemble
learning for decreasing the variance error the results of a number of classifiers
are combined to make a prediction. An ensemble method improves the prediction
performance if the overlap of misclassification of the single classifiers is small. On
average we see 5.1 % AUC improvement in random forest classifiers comparing to
single decision tree classifier which shows the variance reduction influence.

Since all features are available in the SR space and the bagging classifier works
better than other methods, we continue the following experiments with the SR
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Table 6.2 Recall, precision and AUC for different clas-
sification algorithms on the three different prediction
spaces, SR, GR, and IR, using 10-fold cross validation
over 10 different random training sets

Algorithm Space Precision Recall AUC

J48 SR 0.888 0.807 0.907

GR 0.869 0.834 0.901

ER 0.935 0.81 0.898

Naïve SR 0.836 0.514 0.825

Bayes GR 0.825 0.441 0.817

ER 0.945 0.706 0.895

Random SR 0.898 0.843 0.944

Forest GR 0.864 0.883 0.944

ER 0.941 0.944 0.982

Bagging SR 0.908 0.84 0.951

GR 0.863 0.854 0.952

ER 0.946 0.942 0.986

Table 6.3 Prediction strength of different fea-
ture sets for SR space using the bagging classi-
fier with 10-fold cross validation over 10 differ-
ent random training sets

Features set Precision Recall AUC

Social 0.903 0.792 0.919

Geographic 0.721 0.786 0.811

Geo-social 0.863 0.853 0.942

Similarity 0.849 0.851 0.928

All features 0.908 0.84 0.951

space and bagging classifier. To study prediction strength of each of the feature
sets, social, geographic, geo-social and similarity, each time we keep one of the
feature sets and evaluate it using the bagging classifier with the same setting. As
shown in Table 6.3, the geo-social features outperform the other three sets, and
the geographic feature set has the worst performance. Comparing the prediction
performance using all features to different subsets shows integrating all features
from social, environmental, and personal can contribute to co-offence prediction.

Most existing unsupervised link prediction methods assign scores to the potential
links and rank them. The top-N links are categorized as new links, and the remaining
as missing links. The evaluation of unsupervised methods is same as single
features evaluation in Sect. 6.5.2. Preferential, Jaccard, and Adamic are common
unsupervised link prediction methods as addressed in [12]. While Preferential has
the highest the AUC value among individual features we see more than 13 %
improvement in the bagging classifier result, which means supervised classifiers
outperform the unsupervised predictors significantly.



94 6 Co-offence Prediction

1 2 3 4 5 6 7 8 9 10
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

R [km]

A
U

C

CCN
CCT
CCTT
OCN
OCT
OCTT

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Positive Samples Proportion

V
al

ue

Precision
Recall
AUC

Fig. 6.5 (a) Single features significance using different activity space radius(b) Performance
changes of the bagging classifier for different imbalance ratios. The x-axis states the ratio of the
positive class size over the negative class size

For a better insight into class imbalance issues, we vary the size of negative
samples for the SR space using same set of positive samples, where the positive
samples proportion ranges from 2 % to 100 %. As illustrated in Fig. 6.5b, the AUC
value is relatively stable. Unsurprisingly, with negative sample size and accordingly
imbalanced ratio growth, precision increases and recall decreases. As expected, this
is because of negative class overfitting, meaning that the trained classifier is more
likely to predict non-existing links.

6.5.4 Criminological Implications

Crime forecasting models are divided into short-term and long-term categories
in terms of predicted time periods. Short-term models are beneficial for tactical
decision making, whereas long-term models are helpful for planning and policy
development. Co-offence prediction is an important aspect for short-term models.
Studying new link formation patterns can help designing effective long-term crime
reduction and prevention strategies.

With the settings defined in Sect. 6.5.1, Et+1
∼= 120 K, while the portion of

positive samples is about 9 %. And in the reality the prediction is possible only
in this portion where we had information about both the co-offenders previously.
The proposed framework was able to predict 45 % of all positive samples.

Figure 6.6a shows the cumulative degree distribution P(k) in the co-offending
network G50 for three sets of offenders: V50, {u |∃v ∈ Vt : (u,v) ∈ SR∩Et+1} and
{u |∃(u,v) ∈ SR ∧ (u,v) /∈ Et+1}. One can see that for the same node degree k,
compared to the two other sets, the set of offenders who contribute to forming co-
offences generally has a greater value of P(k). Section 6.5.2 shows that Preferential
for SR space is a strong predictor. This implies the relevance of co-offending
networks for making new criminal cooperation.
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Fig. 6.6 (a) Cumulative degree distribution of offenders (b) Frequency distribution of time
difference between two offenders most recent crime and their first co-offence

Assume that τu,v refers to the first time that a positive co-offence (u,v) occurs
in time interval [51,60], and τ is the time of the most recent offence of u or v in
[1,50]. Figure 6.6b plots the distribution of τu,v − τ for all positive potential co-
offences. We see a power law distribution, meaning that there are many offences
with a small value of τu,v − τ and few with a larger value of τu,v − τ . This result
shows that offenders who were recently active have a higher potential to form new
criminal cooperation.

We see some variance in the prediction strength of different prediction features,
with weak and strong predictors in each of the spaces. For all spaces we see high
prediction results, which shows that there are strong patterns in co-offending. This
supports our idea of dividing criminal cooperation opportunities, this way, finding
stronger co-offence patterns that improve predictions. However, co-offending is
a product of the intricate interplay between many factors, and drawing any firm
conclusions requires more substantial and in-depth research beyond the scope of the
work presented in this book.

6.6 Conclusions

This chapter proposes a supervised learning framework for co-offence prediction.
We define the co-offence prediction problem as a link prediction problem in co-
offending networks. Comprehensively considering criminological theories about
social, environmental, and homophily roots of offending, we assign each pair of
offenders to socially related, geographically related or experience-related criminal
cooperation opportunities, and using these sets we create three prediction spaces.
While we are able to retain half of the co-offences, the prediction space division
allows us to significantly reduce class imbalance which is a major challenge in
link prediction. We do not only use homophily, social and spatial characteristics of
pairs of offenders to define prediction features, but we also define novel geo-social
features combining social and spatial characteristics. Evaluating single features
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significance, we conclude that geo-social features generally are more effective than
others, while we also observe considerable prediction strength in other features.
Employing all features, our classifiers employing all features achieve a recall of 84,
88, and 94 % respectively, for three different prediction spaces, which means that
we can correctly predict roughly 90 % of the co-offences.
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Chapter 7
Personalized Crime Location Prediction

Urban population is expected to grow globally from 2.86 bn in the year 2000 to
4.98 bn by 2030 [48]. While we are within this period of large urban growth,
policymakers and law enforcement agencies are facing an enormous challenge
deploying scarce policing resources more efficiently and effectively. This effective-
ness requires a combination of apprehension of criminals, disruption of criminal
networks, and the deterrence of crime through crime prevention and reduction
strategies.

The spatial analysis of crime is re-emerging in importance [8, 10, 34, 35, 37,
39, 50]. Studies find that crime does not occur uniformly or randomly across the
urban landscapes [4, 8, 27, 37, 50]. Crime hotspots, areas with high crime intensity,
generate a larger percentage of criminal events [37]. Understanding why hotspots
emerge in some places and not in others is a challenging question [5, 6, 8, 37].
Hotspot analysis enables law enforcement to better prioritize their use of resources
for crime reduction and prevention. But the concentration of interest on hotspots
pulls attention away from better understanding areas with more moderate or low
concentration of criminal events. These areas can be referred to as coldspots. Better
understanding coldspots is of value because these areas account for approximately
half of all urban crimes [50].

From the criminological perspective, the best known study of hotspots and
coldspots is a 16-year longitudinal study of crime in Seattle Washington in the USA.
It finds that roughly half of yearly crime incidents occur within only five to six
percent of the city’s road segments [50]. Coldspots cover a much wider area than
hotspots. Targeted policing, or what is called hotspot policing, is not feasible for
crime reduction or prevention in these non-hotspot areas. Better understanding the
spatial distribution of crime incidents in coldspots is essential for the development of
intervention strategies. In hotspot analysis the focus is on modeling the emergence,
evolution and stability of the hotspots. Such analysis is often based on analysis of
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aggregate crime patterns. Coldspot analysis, as is explored in this chapter, requires
modeling of individual offenders’ spatial behaviour. What is needed are models that
are flexible and can be personalized to individual offenders.

Existing models of crime distribution mostly focus on models for predicting
crime locations for time intervals [15]. These studies rely heavily on modeling
hotspot emergence, bifurcation, and diffusion [29, 38] to identify clusters of
incidents in crime intensive areas. These models frequently use concepts of crime
attractiveness that pull people towards locations [11, 17, 38, 39, 41]. There is some
research that explores decision models for offenders following a McFadden decision
theory [4] and the tendency of offenders to commit offences near prior offences [26].
But the models tend to use one decision making process for all potential offenders.

The model presented in this chapter focuses on individualized offending and
decision making with the decision rules being different for the occasional offender
and the frequent repeat offender and repeat co-offender. The model is derived from
Crime Pattern Theory [10] based on the assumption that offenders, rather than
venture into unknown territory, frequently commit crimes in places they are most
familiar with as part of their activity space [10]. We used a simple definition of
activity space in Sect. 6.2.2, but our proposed method in this chapter generates a
probabilistic activity space for every offender.

Activity space is shaped by major activity nodes such as home, work/school and
entertainment or shopping locations, that is, the frequently visited places determined
by a person’s daily routine activities. Surrounding an activity space, an individual
develops visually, and through local information, an awareness of the surrounds.
An activity space is a subset of an awareness space. Activity spaces and awareness
spaces change over time with movement to new home locations, new employment,
the development of new shopping and entertainment areas, and the development of
new mass transit and roads. But, fortunately, crime is relatively rare, and acceptable
targets of crime or victims are likely to be found easily within an awareness space.
Outside an activity or awareness space, an offender will have to consciously hunt for
criminological opportunities and likely face higher uncertain or unforeseeable risks.
Crime occurrence space is more likely a part of an activity space that intersects with
the location of suitable targets preferred by an offender.

The focus of this model is on crimes that are linked to individual offenders in
non-hotspot urban areas. It uses random walk to model how offenders encounter
criminal opportunities at a local level near anchor locations in an activity space [40].
In [40], the authors propose a random walk based model for capturing the dynamics
of hotspot formation (see [40] for a Levy Flight model). We present here an extended
random walk model, CRIMETRACER, for generating the activity space associated
with offenders living in an urban area. In CRIMETRACER, the random walk process
is personalized to uncover the spatial behaviour of all individual offenders.

For the urban layout we assume a small-scale road network on which an offender
moves about in an urban area. By doing so, we gradually compute an approximation
of the offender’s activity space by reflecting the probability of visiting (and possibly
committing crime) for each road segment of the urban area. This result is then used
for predicting crime locations for individual offenders, something not addressed
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in crime spatial analysis to the best of our knowledge. Based on our experimental
evaluation, personalization is successful for detecting crime locations in coldspots.
The extended random walk model outperforms the random walk model and the other
evaluated methods in terms of the recall and precision metrics.

Section 7.1 discusses the related work. Section 7.2 introduces the CRIME-
TRACER model. Section 7.3 presents the experimental evaluation. Finally, Sect. 7.4
concludes this chapter.

7.1 Background

The environment that we live in influences our actions and movements in different
ways. Highways, streets, and road networks guide us to our destinations. Our desti-
nations including home, workplace, recreation center, and business establishments
determine where we are going. Consequently, where we are at a point of time is
dictated by our destinations. On the other hand, the transportation routes leading us
to our destinations are limited and predictable. Each individual has normal, routine
pathways or commuting/mobility routes which are unique. Yet in the aggregate in
time and space we often have rush hours and congestion at intersections or mass
transit stops that handle large numbers of people.

Offenders are most often “non-offenders” and develop routine mobility patterns
and routine alternate routes. In many ways they follow the same process in their
mobility as non-offenders in the urban environment. Their spatial awareness is
formed based on their destinations and transportation routes, and potential targets
located in frequently visited places may attract them.

For predicting crime locations of offenders we need to understand offender
mobility patterns. In this section, we describe criminological theories and research
that addresses mobility.

7.1.1 Spatial Pattern of Crime

Place is important in bringing offenders and crime targets together. Crime is not
distributed uniformly or randomly across a city. Instead, crime is associated with
interaction between offender activity space and places with suitable targets. Spatial
characteristics play an important role in criminal activity. Environmental criminol-
ogy concludes that “patterning of crime, and even the volume of crime, depends
on motivation and opportunity, and mobility and perception” [9]. Criminological
studies often focus on these aspects of crime spatial pattern: Crime Hotspot Analysis
for areas with high crime rates and Journey to Crime Analysis focus on the impact of
offender mobility on patterns of crime. Journey to crime studies generally consider
two factors: direction and distance, and conclude that offender trips are generally,
but not always, short and directed to specific locations [7, 47].
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Environmental criminology, the field of studying crime in relation to particular
places, includes three important theories: routine activity theory, rational choice
theory, and Crime Pattern Theory. Routine activity theory focuses on offenders
within the larger society and rational choice theory focuses on offender decision
making processes. Crime Pattern Theory adds a new dimension: interaction and
movement of offender and victim through place [16].

Crime Pattern Theory, with the emphasis on spatial aspects, has become a central
theory of crime spatial pattern analysis. Our CRIMETRACER model presented in
Sect. 7.2 is constructed based on Crime Pattern Theory.

7.1.2 Crime Pattern Theory

Offenders, just like other people, have their own activity spaces they build up from
their regular non-offending portions of their lives, as well as through their offending
activities. Crime Pattern Theory [10] says that, rather than venture into new areas
to commit crimes, offenders will act on criminological opportunities that are within
the areas they are familiar with, more specifically those that are within their activity
space. This is intuitively correct. If the offender is outside of their activity space,
they will be in unfamiliar territory and will have to hunt for a criminological
opportunity.

In one sense, looking for targets outside of a known area may mean passing
suitable targets in a known area with the hope that a longer search in unknown
territory will uncover a better target. There is no certainty a better target will be
found with normal time and distance constraints. For most types of common crimes
there are many more potential targets than an individual offender will victimize
within their own activity space.

Basically people do not look in unfamiliar areas for common targets. The analogy
is shoppers looking for bread or milk, they go to stores they know. Someone who is
planning to steal from cars, looks at cars in their usual activity space. Why explore
in an area where you do not even know what type of cars are there?

Crime occurrence space is within a high probability part of activity space that
intersects with the location of targets seen as suitable to an offender. This is
intuitively plausible as outside of their activity space, they will have to hunt for
criminological opportunities and more likely face uncertain or unforeseeable risks.

7.1.3 Activity Space

Human cognition, spatial decision-making and human movements help to describe
the activities of individuals—a way of thinking that has a long history in neurology,
geography, and psychology [2, 3, 14, 21, 27, 33, 47]. People do not move randomly
across urban landscapes [22]. For the most part, they commute between a handful
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Fig. 7.1 Activity space

of routinely visited places like home, work, recreational facilities, and favorite
shopping centers. With each and every trip, they will get more familiar with, and
gain new knowledge about, these places and everything along the way. Eventually,
a person will be at ease with a place. At this point, the place becomes part of
the person’s activity space, illustrated in Fig. 7.1. Activity space has two main
components: Nodes and Paths [10]. The Nodes, called activity Nodes, are the
locations that the person frequents, such as a workplace, residence, or recreation.
These are the end-points of the journey. The Paths, called activity Paths, connect the
Nodes and represent the person’s path of travel between them.

7.1.4 Directionality

An offender commutes between his activity Nodes, but activity Paths that he chooses
affect his activity and awareness spaces. Walkways and roadways that an offender
selects for moving from one point to the next point in his commuting area are
important in forming his activity and awareness spaces. On the other hand, the road
network design and public transport system are very influential on formation of
activity space of an offender.

Crime attractors and generators, locations where crime tends to cluster, affect
offenders’ directional preference. Crime generators are locations such as businesses,
institutions that bring large numbers of people together. Crime attractors and
generators affect directionality of offenders’ movement [11, 17–19, 41].
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7.1.5 Crime Location Prediction

Criminology theories state that involvement in crime is the result of: (1) an
individual’s crime propensity; and (2) features of the environment to which an
individual is exposed. While propensity towards crime has long been studied, in
the past few decades features of the environment received specific attention, and it
is concluded that environmental criminology plays an essential role in developing
crime reduction and prevention tactics that consider individual offenders [9]. New
research areas emerge, such as crime mapping [25], geographic profiling [35], and
crime forecasting [23, 30].

Several studies have explored the activity space of offenders. Rossmo [35] has
developed a widely recognized method of inferring the activity space of an offender
to determine the likely home location based on the person’s crime locations. His
approach is most often used for serious serial offenders and known as Geographic
Profiling. He assumes that offenders will select targets and commit crimes near their
home address or another major activity node or anchor point. Using this assumption,
each new crime location is plotted on a map and a distance-decay function is used to
calculate a probability space around each crime to denote the possible home location
(and corresponding probability) of the offender. Geographic Profiling narrows down
the probable home/nodal location of an offender more accurately with increasing
number of crimes associated with the offender.

Canter [13] splits movement patterns of offenders into commuters and maraud-
ers. Marauders use a fixed base location (home, for example) and commit their
crimes around it, making geographic profiling on this type of offender possible.
According to Canter, and consistent with Crime Pattern Theory, marauders derive
their offending locations from spatial patterns of their non-criminal daily activities.
Although commuters probably also have a consistent base location, they travel to
other places to commit crimes. Such travel patterns must be taken into account,
making geographic profiling much more difficult.

Frank [20] proposed an approach to infer the activity Paths of all offenders in
a region based on their crime and home locations. Assuming the home location as
the center of an offender’s movements, the orientation of Activity Paths of each
individual offender was calculated so as to determine the major directions, relative
to their home location, into which they tended to move to commit crimes.

Based on criminological theories, several studies propose mathematical models
of spatial and temporal characteristics of crime to predict future crimes. However,
these models do not predict individual offender behaviour. For instance in [30], the
authors use a point-pattern-based transition density model for crime space-event
prediction. This model computes the likelihood of a criminal incident occurring
at a specified location based on previous incidents. In [40], the authors model the
emergence and dynamics of crime hotspots. This work uses a two-dimensional
lattice model for residential burglary, where each location is assigned a dynamic
attractiveness value, and the behaviour of each offender is modeled with a random
walk process. The authors study the impact of the model parameters on hotspot
formation using a computer simulation.
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Note that all of the above-mentioned methods solve related but different prob-
lems to which the experiments presented here cannot be compared. The model
presented in [30] only predicts the time and location of the crime in the aggregate
level. For a different purpose but similar to our work, Short et al. [40] uses standard
random walk to model offenders’ criminal behaviour. The method proposed in [35]
and [13] discover offender home locations based on his crime locations. And finally,
the output of the method proposed in [20] is locations which are centers of interest
for committing crime. However, we compare to different Collaborative Filtering
methods which are used for location recommendation in location-based social
networks [49, 52]. Collaborating filtering (CF) infers the user’s implicit preference
form the explicit opinions of similar users based on the idea that users with similar
behaviour in the past will have similar behaviour in the future [32].

7.1.6 Urban Environment

Intuitively, a road network can be decomposed into road segments, each of which
starts and ends at an intersection. We use the dual representation where the role
of roads and intersections is reversed. All physical locations along the same road
segment are mapped to the same node. Formally, a road network is an undirected
graph R(L,Q), where L is a set of nodes, each representing a single road segment.
Road segments lj and lk are connected, {lj, lk} ∈ Q, if they have an adjacent
intersection in common. Crime locations within a studied geographic boundary are
mapped to the closest road segment. Henceforth, the term “road” is used to refer to
a road segment.

A vector ȳj denotes the features of the road lj including road length dj, and road
attractiveness features vector āj. Further, āj is a vector of size m where the value of
the kth entry of āj corresponds to the total number of crimes of type k committed
previously at lj. Πj denotes the set of neighbors of road lj in the road network. Δ ⊂ L
denotes a set of roads with the highest crime rate, called crime hotspots. Dlj,lk is the
distance of road lj from hotspot lk ∈Δ , and fj denotes the number of crimes at road lj.

Li is the set of roads at which offender ui has been observed, including all of his
known home and crime locations. fi,j and ti,j, respectively, denote the frequency and
the last time ui was at anchor location lj. Offender trend is given by a vector x̄i of
size m which indicates the crime trend of ui as extracted from his criminal history.
That is, the value of the kth entry of x̄i corresponds to the number of crimes of type
k committed by offender ui.
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7.1.7 Problem Definition

Given a crime dataset C , an offender ui and road network R(L,Q) associated with
C , the goal is to learn the activity space distribution F for ui on R [43–45]. That is,
for each road lj ∈ L, F(i, j) states the probability that lj is part of the activity space
of ui, and thus the likelihood for offender ui committing a crime at road lj is

F(i, j)−→ [0,1] with
|L|
∑
j=1

F(i, j) = 1 (7.1)

By learning the activity space distribution of individual criminal offenders,
we obtain a probabilistic model of offender activity space that can be used for
personalized prediction of future crime locations of the offender. The assumption
is that the richer and more detailed the offender profile is, the more accurate is the
probabilistic activity space model, and also the prediction of future crime locations.
This probabilistic view of activity space means that there is no sharp boundary
between activity space and awareness space, which directly corresponds to the
intuitive understanding of the concept of activity space in criminology.

7.2 CRIMETRACER Model

In this section, we present CRIMETRACER [43–45], our proposed crime spatial
analysis model.

7.2.1 Model Description

A random walk over a graph is a stochastic process in which the initial state is known
and the next state is decided using a transition probability matrix that identifies the
probability of moving from a node to another node of the graph. Under certain
conditions the random walk process converges to a stationary distribution [24],
which assigns an importance value to each node of the graph.

The random walk method satisfies the locality aspect of crimes, which states that
offenders do not attempt to move far from their anchor locations. But it has some
shortcomings that we aim to address in the CRIMETRACER model.

The CRIMETRACER model consists of three important components: an offender,
the road network, including all locations where the offender committed crime,
and the co-offending network that connects offenders. Starting from an anchor
location, the offender explores the city through the underlying road network. At
each road he decides whether to proceed to a neighboring road or return to one of
his anchor locations. The random walk process continues until it converges to the
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steady state which reflects the probability of visiting a road by the offender. This
probability can be relevant to the offender’s exposure to a crime opportunity.

For learning the activity space of an offender we need to understand his daily
life and routines, but in the crime dataset generally we miss the Paths completely
and the Nodes partially (refer to Sect. 7.1.3), which is a major challenge. To address
these challenges, we improve our incomplete knowledge about offenders with the
available information in the dataset. The set of anchor locations of each offender is
extended by adding his co-offenders’ anchor locations. The extended set is denoted
as main anchor locations. This extension is motivated by the assumption that friends
in the co-offending network are likely to share the same location.

For each offender, using a Gaussian model, we define his intermediate anchor
locations as the roads closest to the set of his main anchor locations. An offender
starts his random walk either from a main anchor location or from an intermediate
anchor location.

Given that the actual trajectories in an offender’s journey to crime are not
known, the model guides offender movements in directions with a higher chance of
committing a crime. This is done by taking into account two different aspects that
influence offender movement directionality in computing the transition probabilities
in a random walk. The first aspect refers to road characteristics in terms of road
feature values: the number of crimes committed on this road for each different crime
category and the road length. The second aspect refers to the personal preferences
of each offender for certain types of crime, as stated in the offender profile, as
a driving factor in the decision process when encountering a crime opportunity.
Whenever none of the neighbors of the current road promise any crime opportunities
of interest, road length is the single determining factor. Using the supervised random
walks method [1], we learn the importance of these features and exploit them in
computing the transition probability matrix for the random walk.

The second proposed approach for learning the movement directionality of an
offender uses the concept of crime generators and attractors [11]. These are two
types of locations where crimes tend to cluster. Assuming that offenders are drawn in
directions leading toward criminal attractors, we assign a higher probability to roads
leading toward crime hotspots—much like gravity centers affecting the random
walk.

The random walk stops in a road which provides an opportunity for committing
a crime, depending on both road characteristics and offender crime preferences.
Below we describe different elements of the proposed model in detail.

7.2.2 Random Walk Process

For each single offender, we perform a series of random walks on the road network
R(L,Q). In each random walk the offender starts his exploration from one of his
anchor locations, traversing the road network to locate a criminal opportunity.
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For offender ui, the random walk process starts from one of his anchor locations
with predefined probabilities as described in Sect. 7.2.3. At each step k of the
random walk, the offender is at a certain road lj and makes one of two possible
decisions:

• with probability α he decides to return to an anchor location and not look for a
criminal opportunity this time, choosing an anchor location in one of two ways:

– with probability β he decides to return to a main anchor location l ∈Li.
– with probability 1−β he returns to an intermediate anchor location l ∈Ii.

• with probability 1−α he continues looking for a crime opportunity.

If he continues his random walk, then he has two options in each step of the
walk:

• with probability θ(ui, lj,k) stop the random walk, which means the offender
commits a crime at road lj.

• with probability 1−θ(ui, lj,k) continue the random walk, moving to another road
which is a direct neighbor of lj.

To continue the random walk at road lj, we select a direct neighbor road from
Πlj . The probability of selecting road segment lk in the next step is defined as

P(lj → lk) =
φw̄(lk)

∑
lp∈πlj

φw̄(lp)
(7.2)

The probability of being at road lr at step k+ 1 given that the offender was at
road lj at step k is

P(Xl,k+1 = lr|Xl,k = lj) = (1−α)(1−θlj,k)×P(lj → lr)

= (1−α)(1−θlj,k)×
φw̄(lr)

∑
ls∈Πlj

φw̄(ls)
(7.3)

We terminate the random walks when ||Fm+1|| − ||Fm|| ≤ ε , where Fm =⎛
⎜⎝

F(ui, l1)
...

F(ui, l|L|)

⎞
⎟⎠ is the results for ui after m random walks. For some offenders the

random walks do not converge, in which case we terminate the overall process at
m >10,000.
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7.2.3 Starting Probabilities

CRIMETRACER distinguishes two different types of starting nodes:

• Main anchor locations are all anchor locations of a single offender and his
co-offenders: Li = Li ∪ {lj : lj ∈ Lv,v ∈ Γu}. Co-offending links are important
since they are the reasons for many spatial effects related to crime [36]. It is
concluded that offenders who are socially close are spatially close too [42]. The
rationale is that offenders who have collaborated in the past likely may have
shared information on anchor locations in their activity space, an aspect that
possibly affects their choice of future crime locations. In computing the starting
probability of each anchor location, the two primary factors are the frequency and
the last time an offender visited an anchor location. The probability that offender
ui starts his random walk from lj thus is

S(i, j) =
fi,j × e

−(t−ti,j)
ρ

∑
lk∈Li

fi,k × e
−(t−ti,k)

ρ

(7.4)

where t is the current time, and ρ is the parameter controlling the effect of the
timing.

• Intermediate anchor locations are the closest locations to main anchor locations.
Human mobility models use Gaussian distribution to analyze human movement
around a particular point such as home or work location [12, 22]. We assume
that offender movement around his main anchor locations follows a Gaussian
distribution. Each main anchor location of offender ui is used as the center,
and the probability of ui being located in a road is modeled with a Gaussian
distribution. Given road l the probability of ui residing at l is computed as follows:

S(i, l) = ∑
lj∈Li

fi,j
∑

lk∈Li

fi,k

N (l|μlj ,Σlj)

∑
lk∈Li

N (l|μlk ,Σlk)
(7.5)

Here l is a road which does not belong to the set of main anchor locations.
N (l|μlj ,Σlj) is a Gaussian distribution for visiting a road when ui is at anchor
location lj, with μlj and Σlj as mean and covariance. We consider the normal-
ized activity frequency of ui at lj, meaning that a main anchor location with
higher activity frequency has higher importance. For offender ui, the roads with
the highest probability of being an intermediate anchor location are added to the
set Ii as additional starting nodes besides the main anchor locations.
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7.2.4 Movement Directionality

As discussed in Sect. 7.1.4, directionality of offender movement plays an important
role in activity space formation. We propose here two approaches to determining
movement directionality. The first approach learns the weights of the features that
determine the probability of selecting a road among all neighbor roads in a random
walk process. The second approach leads an offender in the direction that gets him
closer to the crime hotspots.

Hotspots Influence In this approach the transition probability is computed based
on proximity of a road to the crime hotspots and the importance of each crime
hotspot, which is proportional to the number of crimes committed there. The
function φ(lj) is used in computing the transition probability (refer to Sect. 7.2.2)
of moving offender ui from lk to lj:

φ(lj) =
|Δ |
∑
n=1

Dk,n × fn (7.6)

where Dk,n is the distance of road lk from the hotspot ln ∈ Δ , which is equal to the
length of shortest path between two roads on the road network. fn is the number of
crimes committed at ln.

Learning Road Feature Weights Road feature weights w̄ are used to compute the
transition probabilities. The function φw̄(lj) is computed based on the road features

φw̄(lj) =
m+1

∑
k=1

wk × yj,k (7.7)

where ȳj,k is the value of kth feature of the road lj, and wk is the corresponding
weight of the feature k.

We use the same idea used in the supervised random walks method [1] for link
prediction in social networks. This method guides the random walk toward the
preferred target nodes by utilizing node and edge attributes.

Each offender in a random walk starting from his home location reaches a
crime location. In the training data for each offender we have a series of crime
journeys, meaning that for a source node s we have a set of destination nodes
D = {d1,d2, . . . ,dn}, and a set of non-destination nodes Z = {z1,z2, . . . ,zm}. The
probability of visiting a node pd is influenced by the road transition probabilities.
And the transition probabilities are dependent on the road feature weights. Now, we
say an offender starting from node s so as to visit destination nodes di ∈ D more
often than non-destination nodes zi ∈ Z by formulating the following optimization
problem:

min
w̄

F(w̄) = ‖w̄‖2 +λ ∑
d∈D,z∈Z

loss(pz −pd) (7.8)
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where λ is the regularization parameter, and loss is a predefined loss function for
penalizing the cases in which the stationary probability of a non-destination node pz

is higher than the stationary probability of a destination node pd.

7.2.5 Stopping Criteria

The probability of stopping the random walk for an offender at a given road
corresponds to the probability of this offender committing a crime in that road
segment. Two factors influence the stopping probability of offender ui in the road lj.
The first one relates to the similarity of the crime trend of offender ui and the
criminal attractiveness of road lj, where higher similarity means a higher chance
that ui’s random walk stops at lj. The second factor is the distance of lj from the
starting point measured in the number of steps from the starting point. To satisfy
the locality aspect of crimes, the probability of continuing the random walk should
decrease while getting farther from the starting point:

θ(ui, lj,k) = Sim(i, j)× 1

1+ e
−k
2

(7.9)

where Sim(i, j) denotes the cosine similarity of crime trend of ui and the road
attractiveness of the road lj. The stopping probability is inversely proportional to
the step number k:

Sim(i, j) =
x̄i.āj

|x̄i||āj| (7.10)

7.3 Experiments and Results

In this section, we present our experimental design, the comparison partners, and
the results [43–45].

7.3.1 Data Characteristics

For the study presented here, we concentrate on the use of a subset of this dataset
which includes all crimes in Metro Vancouver, B.C. (total population: over 2.4
million), where different regions are connected through a road network composed
of 64,108 road segments with an average length 0.2 km. Table 7.1 shows a statistics
for the used crime dataset. Figure 7.2 shows the spatial distribution of crimes in
Metro Vancouver.



112 7 Personalized Crime Location Prediction

Table 7.1 Statistical properties of the Metro Vancouver crime
dataset

Property Value

Number of crimes 125,927

Number of offenders 189,675

Number of offenders with more than one crime 25,162

Offenders with more than one crime location 18,615

Number of co-offending links 68,577

Number of co-offenders in co-offending network 17,181

Average node degree in co-offending network 4

Number of road segments 64,108

Average crime per road segment 2

Fig. 7.2 Crime distribution in Metro Vancouver; red dots show crime locations, and black lines
show the major roads

Figure 7.3a and b illustrate the distribution function of crime incidents per
offender and per road segment. Both distributions have heavy-tailed pattern. 83 %
of the offenders committed only one crime, while less than 1 % of the offenders
committed ten or more crimes. Further, 38 % of the road segments are linked to at
least one crime and 9 % are linked to ten or more crimes. Half of all the crimes
occurred in only 1 % of all road segments, and a total of 25 % in only 100 road
segments.

Figure 7.4a and b, respectively, show the average home location to crime location
distance and the average distance between crime locations for all offenders in the
dataset. The average home to crime location distance of 80, 63, and 40 % of all
offenders is less than 10, 5, and 2 km, respectively. And the average crime location
distance of 73, 52 and 26 % of all offenders is less than 10, 5, and 2 km, respectively.
One can assume that frequent offenders are generally mobile and have several home
locations identified in their records. In fact, 41 % of the offenders who committed
more than one crime have more than one home location.

The dataset differentiates more than 1,000 crime types, with half of them
occurring only a few times. For three well-defined categories of personal crime
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Fig. 7.3 Distribution function: (a) Crimes per offender; (b) Crimes per road segment

Fig. 7.4 Avg. distance (a) home–crime locations; (b) crime–crime locations

(like assault), property crime (like break & enter), and drug crime, as expected,
the property crime category has the largest average home location to crime location
distance. For half of the repeat offenders, at least half of their crimes belong to only
one category, meaning that half of the repeat offenders specialize in at least one
category, and they keep their crime trend for a while.

7.3.2 Experimental Design

For each offender we order his crime events chronologically based on their time.
Then we split these events into a training set and a test set. The first 80 % of
the crimes are used for training the model which predicts the offender activity
space. The remaining 20 % of crimes are used for testing the model. We consider
only offenders with at least two different crimes which includes about 10 % of the
offenders in the crime dataset. We note that the training data used for learning
road features as described in Sect. 7.2.4 is not included in the evaluation to prevent
biasing CRIMETRACER.
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After learning the offender activity space in the training phase, the trained model
is applied in the test phase to predict future crime locations. To do so, the top-N
roads with the highest probability are suggested as the most probable places for an
offender to commit future crimes.

As discussed above, the focus of this work is modeling offenders’ spatial
behaviour in the coldspots. Thus, in our experiments we exclude the top 100 roads
with the highest crime numbers, the hotspots. The number of crimes in these hotspot
roads is 100 to 1100 times greater than the average number of crimes in a road. In
the evaluation we distinguish two groups of offenders: repeat offenders with ten or
more crimes and non-repeat offenders with less than ten crimes.

To evaluate the accuracy of activity space prediction, we measure the number of
crimes committed by an offender in his testing dataset among the top-N predicted
locations. If a crime location in an offender’s test set is also among the top-N
predicted locations, that crime location is considered to be correctly predicted. Three
accuracy measures, precision, recall, and utility, are used as evaluation metrics:

• Recall computes the ratio of the number of correctly predicted crime locations
(true positives) to the number of crime locations of the offender in the test set
(true positives + false negatives).

• Precision computes the ratio of the number of correctly predicted crime locations
(true positives) to the number of all predictions N (true positives + false
positives).

• Utility computes the percentage of offenders with at least one correctly predicted
crime location.

Recall and precision are averaged across all offenders to determine the overall
performance for different values of N. In computing the precision value for an
offender, if the activity space contains M < N roads, we use M instead of N.

7.3.3 Comparison Partners

In this section, we introduce different versions of CRIMETRACER and the compari-
son partners methods used in our performance evaluation.

For evaluating the CRIMETRACER performance, we test the two different move-
ment directionality approaches and the following types of locations included in the
activity space of offenders. For every offender locations are categorized into three
groups: (a) Known locations that includes home and crime locations of the offender.
(b) Derived locations which are locations shared with co-offenders and intermediate
anchor locations. These locations are derived from observed information in the
crime dataset. (c) Unknown locations that includes any location which is not a
known or derived location.

For a deeper understanding of CRIMETRACER performance and the role of each
of the above-mentioned location types, we consider three approaches : (1) In the
first approach (denoted by U) we include only unknown locations in the activity
space of an offender and consequently in the crime location prediction; (2) In the
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second approach (denoted by D) we include only unknown and derived locations
in the activity space of an offender; and (3) In the last approach (denoted by A) all
locations are considered.

Two different movement directionality methods are introduced in Sect. 7.2.4:
hotspot influence (denoted by H) and learning road feature weights (denoted by F).
For each of these CRIMETRACER versions we consider the three above-mentioned
evaluation approaches. For instance, CRIMETRACER-HU denotes CRIMETRACER

using the hotspot influence method (H) for movement directionality that includes
only unknown locations (U) in the predicted locations.

As discussed in Sect. 7.1.5, there is no related work that solves the problem
of personalized crime location prediction. However we use the following methods
which are equivalent to state-of-the-art methods for location recommendation [49]:

Random Walk This is the standard random walk with restart method (RWR) [46].

Hotspots Using the basic hotspot approach (HS), roads are ranked based on the
number of crimes in that road.

Proximity In the proximity approach (DS) we rank the roads based on their
distance from the offender’s anchor locations. Here distance denotes the length of
the shortest path between two roads on the road network.

Offender-Based CF The intuition behind the offender-based CF approach (OCF)
is that offenders who had similar behaviour in the past will have similar behaviour in
the future. Let bij = 1 if lj ∈Li, and bij = 0 if lj /∈Li. Now F(i, j) is the probability
of a crime committed in road lj by ui:

F(i, j) =

∑
uk∈V∧k 	=i

Sim(i,k).bk,j

∑
uk∈V∧k 	=i

Sim(i,k)
(7.11)

where Sim(i,k) denotes the cosine similarity measure between offenders ui and uk:

Sim(i,k) =

∑
lj∈L

bi,j.bk,j

√
∑

lj∈L
b2

i,j

√
∑

lj∈L
b2

k,j

(7.12)

Location-Based CF In location-based CF (LCF) we consider the similarity of
locations instead of the similarity of offenders:

F(i, j) =

∑
lk∈L∧k 	=j

Sim(j,k).bi,k

∑
lk∈L∧k 	=j

Sim(j,k)
(7.13)

where Sim(j,k) is the cosine similarity measure between roads lj and lk:
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Sim(j,k) =

∑
ui∈V

bi,j.bi,k

√
∑

ui∈V
b2

i,j

√
∑

ui∈V
b2

i,k

(7.14)

Co-offending-Based CF Co-offenders can share their information about criminal
opportunities and take advantage of this information in committing a new crime. Co-
offending-based CF (SCF) computes the probability of a crime being committed in
road lj by ui as follows:

F(i, j) =

∑
uk∈Γi

Sim(i,k).bk,j

∑
uk∈Γi

Sim(i,k)
(7.15)

Sim(i,k) denotes the geo-social influence between ui and uk and is defined as
follows:

Sim(i,k) =
|Γi ∩Γk|
|Γi ∪Γk| +

|Li ∩Lk|
|Li ∪Lk| (7.16)

7.3.4 Experiments and Results

CRIMETRACER Scenarios Figures 7.5, 7.6, and 7.7 show performance
of six different versions of CRIMETRACER including CRIMETRACER-HU
CRIMETRACER-HD, CRIMETRACER-HA, CRIMETRACER-FU, CRIMETRACER-
FD, and CRIMETRACER-FA in terms of recall, precision, and utility measures.

With regard to the type of locations included in the prediction process, as
expected CRIMETRACER-HA and CRIMETRACER-FA have the best performance,
and CRIMETRACER-HU, and CRIMETRACER-FU have the worst performance.
The recall of CRIMETRACER-HA, CRIMETRACER-HD and CRIMETRACER-HU
for N = 20 is 23.4, 10.2, and 5.9 %, respectively. Derived and known locations
increase the recall by 4.3 and 13.1 %, respectively. We observe a similar result
when comparing the performance of CRIMETRACER-FA, CRIMETRACER-FD, and
CRIMETRACER-FU.

An important question is which of these scenarios should be used in a real-world
application of CRIMETRACER. According to criminological theories such as exact-
repeat/near repeat event [28] and broken window theory [51], known locations of
offenders are always likely places to commit a new crime. The results presented
in this section also support this idea. In a real-world application known locations
may be included in the predicted locations automatically. One may conclude
that CRIMETRACER-HD and CRIMETRACER-FD are more appropriate versions of
CRIMETRACER for a real-world application.
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Fig. 7.5 Recall of different versions of CRIMETRACER for different values of N
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Fig. 7.7 Utility of different versions of CRIMETRACER for different values of N

Considering the two movement directionality approaches, both versions of
CRIMETRACER achieve higher performance compared to the standard random
walk approach. CRIMETRACER-HD compared to CRIMETRACER-FD and
CRIMETRACER-HU compared to CRIMETRACER-FU have higher recall, precision
and utility. CRIMETRACER-HA compared to CRIMETRACER-FA has higher recall
and utility for all values of N, but their precision values are almost identical for
N >= 6. We conclude that the hotspot influence approach outperforms the other
method, showing the great impact of crime attractors and generators in committing
a new crime by an offender.

Comparison Partners Figures 7.8, 7.9, and 7.10 show the overall performance of
the different evaluated methods in terms of recall, precision, and utility.

To compare CRIMETRACER against the baseline methods, we use only the best
performing versions CRIMETRACER-HD and CRIMETRACER-HU. Both of these
methods consistently outperform all baseline methods for all values of N with regard
to all evaluation metrics. The baseline methods use the same experimental design
as CRIMETRACER-HD, but we also test CRIMETRACER-HU in the comparison
to show that even in this case of a more restricted scenario, CRIMETRACER still
outperforms the baseline methods.

DS obtains the lowest precision and recall values. Despite the well-studied
theory of the relationship between crime commitment and distance from anchor
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Fig. 7.8 Recall for different values of N
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Fig. 7.10 Utility for different values of N

locations, this result shows that this approach is not effective for personalized crime
prediction. Among the CF-based approaches, OCF has the poorest performance.
LCF achieves better recall, but SCF achieves higher precision. It is interesting to
observe that location similarity contributes more to the accuracy of crime location
prediction than offender similarity. One can conclude that SCF uses more reliable
but limited information for predicting the offenders activity space. The recall of HS
improves with increasing N, but this method naturally is strong in predicting crimes
in hotspots and not in coldspots.

Predicting even one crime location of each offender is very important for the
critical task of crime prevention. As for the other two evaluation metrics, both
versions of CRIMETRACER outperform the baseline methods in terms of utility.
The utility of CRIMETRACER-HU and CRIMETRACER-HD is 1.3 and 1.5 %,
respectively, larger than their recall (N = 20), making no significant difference. One
reason for this effect is that half of the offenders committed only two crimes, and
we can predict only one crime location for them, meaning that for these offenders
the recall and utility values are the same.

There has long been interest in the behaviour of repeat offenders since con-
trolling these groups of offenders can reduce the overall crime level significantly.
Figures 7.11, 7.12, and 7.13 depict the performance of the different methods for
offenders with different numbers of crimes. We expect more successful activity
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Fig. 7.11 Recall for the offenders with different number of crimes (N = 20)

space learning for offenders who have committed more crimes, and for whom we
have more information. We observe such a trend for CRIMETRACER-FU, where the
average recall for offenders who committed only two crimes is about 4 % while this
value increases by 3 % for offenders who committed ten or more crimes, as well as
for RWR and SCF.

Interestingly the hotspot influence approach causes a significant increase
in recall of non-repeat offenders (the biggest group of offenders). Comparing
CRIMETRACER-HU to CRIMETRACER-FU, the recall increases by 2 % for this
group of offenders, while the recall for repeat offenders is almost equal for
these two methods. On the other hand, while for CRIMETRACER-FU the recall
of repeat offenders is 3 % higher than the recall of non-repeat offenders, this
difference is only 1 % for CRIMETRACER-HU. Thus, the directionality movement
approach influenced by hotspot locations contributes more to the recall of non-
repeat offenders than to the recall of repeat offenders.

While we do not observe a significant increase in recall of repeat offenders
compared to non-repeat offenders for either of the CRIMETRACER versions, we
observe such a trend in the precision measure. Another interesting observation is
that for SCF using co-offending information causes a significant performance gain
for repeat offenders who have higher co-offending rates.
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Fig. 7.12 Precision for the offenders with different number of crimes (N = 20)

Non-repeat offenders are the majority of offenders, and in this study half
of the offenders used for the evaluation committed only two crimes. As shown
in Figs. 7.11, 7.12, and 7.13, for non-repeat offenders CRIMETRACER-HU and
CRIMETRACER-HD outperform the baseline methods by large margins. We notice
that LCF also works well for offenders who committed only two crimes. This
interesting result shows that beginner offenders tend to commit crimes in common
locations. On the other hand, while SCF is not accurate for beginners, with increas-
ing crime numbers its performance increases significantly. This means that being
more experienced in crime boosts the number of co-offenders and consequently the
chance of sharing criminal opportunities.

CRIMETRACER Elements We studied the contribution of different components
of CRIMETRACER to its performance. Compared to the standard random walk
with restart, CRIMETRACER incorporates additional anchor locations (co-offending
information and intermediate anchor locations), movement directionality, and stop-
ping criteria. We added these components separately to RWR to determine their
individual contribution. Table 7.2 shows the results. The strongest component is the
stopping criteria and the weakest is the learning of road feature weights. The main
idea behind the stopping criteria is to stop the random walk of an offender in a road
where the crime history is similar to the offender crime trend. However combining



7.3 Experiments and Results 123

2 3 4 5 6 7 8 9 >9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Crimes

U
til

ity
DS HS OCF

LCF SCF RW
CRIMETRACER−HU CRIMETRACER−HD

Fig. 7.13 Utility for the offenders with different number of crimes (N = 20)

all components in CRIMETRACER-HD achieves the best result and improves the
performance of RWR significantly in terms of all evaluation metrics. We include the
performance of other versions of CRIMETRACER in Table 7.2 to be able to compare
the performance of different versions of CRIMETRACER more exactly.

We note that the overall performance of CRIMETRACER is comparable to the
performance of state-of-the-art methods for location recommendation [31, 49],
where the information about users’ spatial patterns is much denser than the available
information about offenders. One may criticize that in location recommendation the
exact locations are predicted while in CRIMETRACER only roads are predicted as
offender activity space. However, as discussed in [15], roads are the natural domain
for many policing activities, and a more realistic urban element for predicting a
crime than the exact latitude and longitude. In addition, the road network we use in
our study is in the micro scale with the average road length of 0.2 km.
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Table 7.2 Contribution of different elements of CRIMETRACER to
its performance (N = 20)

Method Recall Precision Utility

RWR 0.011 0.004 0.014

RWR + Road feature weights 0.013 0.003 0.017

RWR + Hotspot influence 0.015 0.003 0.016

RWR + Additional anchor locations 0.019 0.001 0.024

RWR + Stopping criteria 0.036 0.003 0.045

CRIMETRACER-HU 0.059 0.006 0.073

CRIMETRACER-HD 0.102 0.007 0.118

CRIMETRACER-FD 0.084 0.006 0.010

CRIMETRACER-HA 0.23 0.008 0.30

CRIMETRACER-FA 0.22 0.008 0.28

7.4 Conclusions

Modeling activity space of individual offenders is one of the most difficult problems
in human mobility modeling because of limited available information on offenders
and their dynamically changing complex behavioural patterns. CRIMETRACER uses
a personalized random walk to derive a probabilistic activity space model for known
offenders based on facts from their criminal history as documented in an offender
profile. We evaluate our algorithm by data mining operational police records from
crimes in Metro Vancouver within a 5-year time period. We are not aware of any
similar work for modeling offender activity space and, hence, compare the proposed
approach with location recommendation methods. CRIMETRACER outperforms all
other evaluated methods tested here. It boosts the prediction performance of the
repeat offenders, compared to the non-repeat offenders, by using co-offending
information. As expected, the chance of having co-offending links is higher for
repeat offenders. All elements used in CRIMETRACER, which are additional to the
standard random walk model, contribute to the performance of this method.
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Chapter 8
Concluding Remarks

This book extends and integrates multidisciplinary research into a methodological
framework for employing social network analysis in predictive policing, an emerg-
ing field with high potential to serve as a powerful tool for crime reduction and
prevention. Predictive policing enables law enforcement agencies to be smart and
effective in deploying their resources. Social network analysis can play a pivotal
role in predictive policing by mining patterns of relationship among offenders.

This research covers major problems in predictive policing that can take advan-
tage of social network analysis, and is the first comprehensive work in this domain,
to the best of our knowledge. We believe the systematic approach for studying the
criminological problems presented in this work opens the door for researchers in
criminology and computer science fields to explore important issues pertaining to
public safety, and facilitates more informed and deliberate adoption of predictive
policing as a complement for existing policing methods.

Our data mining approaches presented throughout this book show that the struc-
ture of co-offending networks can provide valuable information for understanding
crime patterns and criminal behaviours. The proposed methods extract co-offending
patterns embedded in co-offending networks in the node, group and network levels
to predict criminal activities. We use the extracted patterns to disrupt co-offending
networks, detect organized crime groups, investigate suspects, predict co-offences
and predict crime locations in a personalized manner. While crime prediction is
one of the most difficult predictive tasks because of complicated patterns behind
criminal behaviours, our proposed methods yield high-quality results.

CRIMEWALKER uses partial knowledge of the offenders involved in a crime
incident and the structure of a known co-offending network to recommend the top-N
potential suspects. CRIMEWALKER extends the existing random walk based models
to address link prediction combined with the ability to perform recommendations
based on a set of offenders given as input instead of a single offender.

Our supervised learning framework for the co-offence prediction problem covers
essential aspects of this problem including strong prediction features extraction
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to increase classification performance and appropriate prediction space definition
to overcome the class imbalance problem. By applying different classifiers to the
defined prediction spaces our proposed method can correctly predict up to 90 % of
all co-offences in the best case scenario.

Despite the importance of organized crime for law enforcement agencies, as far
as we know, there is no computational framework for detecting organized crime
activities from crime data. Based on Canadian Criminal Code we formalized the
concept of organized crime group. Then, we proposed a computational approach
using social network analysis prescriptive to adopt a community detection method
for detecting organized crime groups. Our proposed approach provides important
insights into the ways in which co-offending networks shape and affect criminal
behaviour.

CRIMETRACER is a random walk based model which is personalized to predict
the crime location of every offender. Our experimental evaluation shows that
personalization using co-offending network information contributes in detecting
crime locations. Considering the difficulties and importance of modeling offenders’
spatial behaviour, and prediction strength of CRIMETRACER which is up to 23 %,
we believe that this research is groundbreaking in the spatial crime data mining area.

Multidisciplinary research is challenging, both to the researchers regarding their
perspectives and methodologies and to policymakers and practitioners regarding the
way the ‘problem’ is defined. In this research we have collaborated closely with
criminologists throughout all phases from problem definition to solution design to
result analysis. For our experimental evaluation we use real-world crime data, and
major parts of this research are carried out in close collaboration with experts in law
enforcement agencies; for instance, the work presented in the section on organized
crime group detection is the result of a project defined and conducted by Public
Safety Canada, Organized Crime Division and RCMP “E” Division.

Predictive policing as a multi-step process has important operational challenges.
Three main steps of this process, question formulation, data preparation, and data
mining, have been studied in depth in this research. The ultimate steps, police acting
on and efficacy evaluation, are beyond the scope of the research presented here.
Predictive policing that can make a difference needs an iterative process where law
enforcement and policymakers act on analytics derived through crime data mining
at the strategic, the tactical, and the operational level.

We believe that the ideas presented here can inspire new research directions
in social network analysis and data mining with useful applications for predic-
tive policing, criminal investigations, and criminal intelligence in the endeavor
to combat crime. However, many open problems still remain in the realm of
predictive policing for taking full advantage of social network analysis. Here, we
briefly outline several potential future research directions in the field of predictive
policing.

• Improving the proposed methods. There are a number of possibilities to
enhance the performance of the proposed methods. For instance, in CRIME-
TRACER enhancing movement directionality element can contribute to the
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method performance. A suggestion is to personalize hotsposts for every offender
instead of using all hotspots. In the proposed supervised co-offence prediction
framework counterintuitively time-based features work weaker than the original
version of the corresponding feature. Parameter regularization of these features
for improving their prediction strength is an extension of this work. For detecting
organized crime groups and co-offending network key players we do not consider
geographic factors. An interesting research direction to improve the proposed
methods is taking geographic factors into account.

• Mining multiple related criminal networks. All proposed models in this book
take one co-offending network extracted from police-arrest data as input. As
discussed before, because of the nature of crime and criminal behaviour crime
datasets are incomplete. Therefore, integrating different resources to have a more
complete picture of offenders’ activities is essential. For instance, in detecting
organized crime groups intelligence service data can be used as complement of
police-arrest data. An interesting direction to extend this book is using multiple
criminal networks for predictive policing tasks.

• Learning from collective human behaviour. Mobile phone data provide rich
information on population movement in urban area which makes it possible the
study of collective human behaviour. In [2], the authors use mobile phone data to
predict crime hotspots. Enriching the personalized crime location prediction and
other predictive policing methods using data sources such as mobile phone data
is a possibility for future work.

• Organized crime group evolution. For tracking organized crime group evolu-
tion we apply a matching function on detected groups over a number of time
steps. The other direction is using evolutionary graph clustering [5] for studying
evolution of organized crime groups.

• Predicting crime location of multiple co-offenders. CRIMETRACER can be
extended to predict the location of crimes committed by multiple co-offenders.
Such a method should use the activity space of individual offenders generated
by CRIMETRACER to learn the locations where a group of co-offenders commits
crimes. This research will address an important criminological question about
how activity space of an offender can be influenced by his co-offenders’ activity
space.

• Detecting criminal groups’ activity space. Existing works for criminal group’s
activity space detection [1, 3] focus only on situations with two groups, and
only find the boundaries between groups’ territories. These models neither
differentiate between crime types, nor consider if a crime is committed by an
offender or a group of offenders. Another future research direction is mining
co-location patterns for detecting criminal groups’ activity space.

• Minimizing the epidemic spread of undesirable behaviours. The influence
of social interactions in forming people behaviours is now widely studied and
recognized in many areas. This is true in the crime world, where the lack of
formal education for criminal skills plays an important role in the formation
of criminals’ behaviours and criminal networks. For performing criminal acts,
obviously learning illegal behaviours must depend on informal networks and
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peer-to peer contacts, because there is no formal type of learning to become a
criminal. According to [9], criminal behaviour is the result of learning an “excess
of definitions favorable to law violation.” Later different studies discuss how
criminal activities may benefit from social interactions by sharing proper know-
how about crime business [4], by recruiting young criminals [8] or by transferring
skills [6]. A possible research problem is minimizing the spread of undesirable
criminal behaviours in a co-offending network assuming the independent cascade
model [7] as a mathematical model of behaviour diffusion.
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